616 research outputs found

    Shock waves in thermal lensing

    Full text link
    We review experimental investigation on spatial shock waves formed by the self-defocusing action of a laser beam propagation in a disordered thermal nonlinear media.Comment: 9 pages, 12 figure

    The Nature of Stellar Winds in the Star-Disk Interaction

    Full text link
    Stellar winds may be important for angular momentum transport from accreting T Tauri stars, but the nature of these winds is still not well-constrained. We present some simulation results for hypothetical, hot (~1e6 K) coronal winds from T Tauri stars, and we calculate the expected emission properties. For the high mass loss rates required to solve the angular momentum problem, we find that the radiative losses will be much greater than can be powered by the accretion process. We place an upper limit to the mass loss rate from accretion-powered coronal winds of ~1e-11 solar masses per year. We conclude that accretion powered stellar winds are still a promising scenario for solving the stellar angular momentum problem, but the winds must be cool (~1e4 K) and thus are not driven by thermal pressure.Comment: 7 pages, including 2 figures. To appear in proceedings of IAU Symposium No. 243: Star-Disk Interaction in Young Star

    Far beyond declarative and non-declarative memories

    Get PDF
    International audienceAccording to general learning theory two major forms of learning can be observed across species. These universal forms of learning are classical and operant conditioning (Tarpy, 1997). Although both forms of conditioning can occur in the absence of awareness of the contingencies between CS (conditioned stimulus) and UCS (unconditioned stimulus) (or action – consequence contingencies) (Huston and Oitzl, 1989; Clark and Squire, 1998), close temporal proximity between a CS and a UCS is required to form an association. In other words, long-term association between a CS and a UCS (or an operant and its consequence) requires two distinct events to occur simultaneously or with little delay (in the range of ms) between them

    CHIANTI - an atomic database for emission lines. VII. New Data for X-rays and other improvements

    Get PDF
    The CHIANTI atomic database contains atomic energy levels, wavelengths, radiative transition probabilities, and collisional excitation data for a large number of ions of astrophysical interest. CHIANTI also includes a suite of IDL routines to calculate synthetic spectra and carry out plasma diagnostics. Version 5 has been released, which includes several new features, as well as new data for many ions. The new features in CHIANTI are as follows: the inclusion of ionization and recombination rates to individual excited levels as a means to populate atomic levels; data for Kα and Kβ emission from Fe ii to Fe xxiv; new data for high-energy configurations in Fe xvii to Fe xxiii; and a complete reassessment of level energies and line identifications in the X-ray range, multitemperature particle distributions, and photoexcitation from any user-defined radiation field. New data for ions already in the database, as well as data for ions not present in earlier versions of the database, are also included. Version 5 of CHIANTI represents a major improvement in the calculation of line emissivities and synthetic spectra in the X-ray range and expands and improves theoretical spectra calculations in all other wavelength ranges

    Evolution of microflares associated with bright points in coronal holes and in quiet regions

    Full text link
    We aim to find similarities and differences between microflares at coronal bright points found in quiet regions and coronal holes, and to study their relationship with large scale flares. Coronal bright points in quiet regions and in coronal holes were observed with Hinode/EIS using the same sequence. Microflares associated with bright points are identified from the X-ray lightcurve. The temporal variation of physical properties was traced in the course of microflares. The lightcurves of microflares indicated an impulsive peak at hot emission followed by an enhancement at cool emission, which is compatible with the cooling model of flare loops. The density was found to increase at the rise of the impulsive peak, supporting chromospheric evaporation models. A notable difference is found in the surroundings of microflares; diffuse coronal jets are produced above microflares in coronal holes while coronal dimmings are formed in quiet regions. The microflares associated with bright points share common characteristics to active region flares. The difference in the surroundings of microflares are caused by open and closed configurations of the pre-existing magnetic field.Comment: 9 pages, 11 figures, accepted for publication in A&

    Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration

    Full text link
    The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with unprecedentedly high angular resolution (consistent with its 1" pixel size). XRT has nine X-ray analysis filters with different temperature responses. One of the most significant scientific features of this telescope is its capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK, which has never been accomplished before. To make full use of this capability, accurate calibration of the coronal temperature response of XRT is indispensable and is presented in this article. The effect of on-orbit contamination is also taken into account in the calibration. On the basis of our calibration results, we review the coronal-temperature-diagnostic capability of XRT

    Signatures of Coronal Heating Mechanisms

    Full text link
    Alfven waves created by sub-photospheric motions or by magnetic reconnection in the low solar atmosphere seem good candidates for coronal heating. However, the corona is also likely to be heated more directly by magnetic reconnection, with dissipation taking place in current sheets. Distinguishing observationally between these two heating mechanisms is an extremely difficult task. We perform 1.5-dimensional MHD simulations of a coronal loop subject to each type of heating and derive observational quantities that may allow these to be differentiated.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Cholinergic cells in the nucleus basalis of mice express the N-methyl-D-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels

    Get PDF
    It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-D-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the nucleus basalis has not yet been investigated. Here, by means of choline acetyl transferase and NR2B or NR2C double staining, we demonstrate that mice express both the NR2C and NR2B subunits in nucleus basalis cholinergic cells.We generated NR2C-2B mutant mice in which an insertion of NR2B cDNA into the gene locus of the NR2C gene replaced NR2C by NR2B expression throughout the brain. This NR2C-2B mutant was used to examine whether a subunit exchange in cholinergic neurons would affect acetylcholine (ACh) content in several brain structures. We found increased ACh levels in the frontal cortex and amygdala in the brains of NR2C-2B mutant mice. Brain ACh has been implicated in neuroplasticity, novelty-induced arousal and encoding of novel stimuli. We therefore assessed behavioral habituation to novel environments and objects as well as object recognition in NR2C-2B subunit exchange mice. The behavioral analysis did not indicate any gross behavioral alteration in the mutant mice compared with the wildtype mice. Our results show that the NR2C by NR2B subunit exchange in mice affects ACh content in two target areas of the nucleus basalis.
    corecore