130 research outputs found

    Sensitivity and Asymptotic Analysis of Inter-Cell Interference Against Pricing for Multi-Antenna Base Stations

    Get PDF
    We thoroughly investigate the downlink beamforming problem of a two-tier network in a reversed time-division duplex system, where the interference leakage from a tier-2 base station (BS) toward nearby uplink tier-1 BSs is controlled through pricing. We show that soft interference control through the pricing mechanism does not undermine the ability to regulate interference leakage while giving flexibility to sharing the spectrum. Then, we analyze and demonstrate how the interference leakage is related to the variations of both the interference prices and the power budget. Moreover, we derive a closed-form expression for the interference leakage in an asymptotic case, where both the charging BSs and the charged BS are equipped with a large number of antennas, which provides further insights into the lowest possible interference leakage that can be achieved by the pricing mechanism

    Neutrophils, Crucial, or Harmful Immune Cells Involved in Coronavirus Infection: A Bioinformatics Study

    Get PDF
    The latest member of the Coronaviridae family, called SARS-CoV-2, causes the Coronavirus Disease 2019 (COVID-19). The disease has caused a pandemic and is threatening global health. Similar to SARS-CoV, this new virus can potentially infect lower respiratory tract cells and can go on to cause severe acute respiratory tract syndrome, followed by pneumonia and even death in many nations. The molecular mechanism of the disease has not yet been evaluated until now. We analyzed the GSE1739 microarray dataset including 10 SARS-positive PBMC and four normal PBMC. Co-expression network analysis by WGCNA suggested that highly preserved 833 turquoise module with genes were significantly related to SARS-CoV infection. ELANE, ORM2, RETN, BPI, ARG1, DEFA4, CXCL1, and CAMP were the most important genes involved in this disease according to GEO2R analysis as well. The GO analysis demonstrated that neutrophil activation and neutrophil degranulation are the most activated biological processes in the SARS infection as well as the neutrophilia, basophilia, and lymphopenia predicted by deconvolution analysis of samples. Thus, using Serpins and Arginase inhibitors during SARS-CoV infection may be beneficial for increasing the survival of SARS-positive patients. Regarding the high similarity of SARS-CoV-2 to SARS-CoV, the use of such inhibitors might be beneficial for COVID-19 patients

    Current approaches for combination therapy of cancer: The role of immunogenic cell death

    Get PDF
    Cell death resistance is a key feature of tumor cells. One of the main anticancer therapies is increasing the susceptibility of cells to death. Cancer cells have developed a capability of tumor immune escape. Hence, restoring the immunogenicity of cancer cells can be suggested as an effective approach against cancer. Accumulating evidence proposes that several anticancer agents provoke the release of danger-associated molecular patterns (DAMPs) that are determinants of immunogenicity and stimulate immunogenic cell death (ICD). It has been suggested that ICD inducers are two different types according to their various activities. Here, we review the well-characterized DAMPs and focus on the different types of ICD inducers and recent combination therapies that can augment the immunogenicity of cancer cells

    Expression and characterization of a novel recombinant cytotoxin II from Naja naja oxiana venom: A potential treatment for breast cancer

    Get PDF
    Breast cancer (BC) is among the leading causes of mortality from cancer in women. Many of the available anticancer drugs have various side effects. Therefore, researchers are seeking novel anticancer agents particularly from natural compounds and in this regard, snake venom is still one of the main sources of drug discovery. Previous studies showed potential anticancer effects of Cytotoxin II (CTII) from Naja naja oxiana against the different types of cancers. In this study, a pET-SUMO-CTII vector was transformed into SHuffle® T7 Express, an Escherichia coli strain, for recombinant protein expression (rCTII) and the cytotoxic effects of this protein was assessed in MCF-7 cells. The flow cytometry assay was applied to measure the apoptosis and cell cycle. Also, mRNA levels of the Bax, Bcl2, P53, caspase-3, caspase-8, caspase-9, caspase-10, matrix metalloproteinases (MMP)-3, and MMP-9 were analyzed by quantitative real-time PCR to determine the underlying cellular pathways affected by rCTII. The results of this study showed that treatment with 4 μg mL−1 of rCTII enhanced apoptosis through the intrinsic and extrinsic pathways. Also, the increase of the cells' proportion in the sub-G1 phase as well as a reduction in S phase was observed. In addition, the expression of MMP-3 and MMP-9 was decreased in the treated group in comparison to the control group that may contribute to the reduced migratory ability of tumor cells. These experimental results indicate that rCTII has anti-proliferative potential, and so this protein could be a potential drug for BC therapy in combination with other drugs

    A systematic mapping review of factors associated with willingness to work under emergency condition

    Get PDF
    Introduction: An effective response to an emergency situation relies on health care workers� preparedness. The main purpose of this study was to provide a comprehensive overview of relevant studies regarding the willingness to work in emergency and disaster situations, describe and classify the most important challenges and solutions, identifying knowledge gaps in the literature which could inform future research. Methods: In this Systematic Mapping Review required information was searched from PubMed, Scopus, the web of science, Embase databases, and Google scholar search engine in the period 2000�2020. Data were analyzed using a content framework analysis. Results: From 2902 article search results, 26 articles met the inclusion criteria. The studies varied in terms of aim, study design, and detail of reporting. The results showed that nearly three-quarters of studies were conducted in high and middle-income countries. Most of the studies were published in 2020 due to the COVID-19 pandemic. Also, the most common types of crises reported in the included studies were emerging and re-emerging infectious diseases. The results show that most of the problems were in the dimension of mental and psychological issues, personnel health concerns, and management relationship with personnel. Conclusion: This mapping review illustrated a big picture of health workers' resilience in disaster conditions. This review presents an overview of different kinds of strategies that address the challenges. One of the most important challenges in health workforce retention is poor communication between managers and staff. Being away from family, which leads to mental fatigue, puts staff in moral dilemmas. Attracting adequate health professionals, especially volunteers and regulating the shifts of health personnel in crisis time will largely prevent burnout. © 2021, The Author(s)

    Cytotoxic t-lymphocyte antigen-4 in colorectal cancer: Another therapeutic side of capecitabine

    Get PDF
    Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an inhibitory immune checkpoint that can be expressed in tumor-infiltrating lymphocytes and colorectal cancer (CRC) cells. This immune checkpoint can attenuate anti-tumoral immune responses and facilitate tumor growth and metastasis. Although capecitabine is an effective chemotherapeutic agent for treating CRC, its effect on the tumoral CTLA-4 expression remains unclear. In the current research, we applied the GSE110224 and GSE25070 datasets to characterize CTLA-4 expression in CRC patients. Then, we analyzed CTLA-4 expression in CRC samples, HT-29, HCT-166, and SW480 cell lines using real-time PCR. Our bioinformatic results have highlighted the overexpression of CTLA-4 in the CRC tissues compared to the adjacent non-tumoral tissues. Our in vitro studies have indicated that SW480 cells can sub-stantially overexpress CTLA-4 compared to HT-29 and HCT 116 cells. In addition, capecitabine can remarkably downregulate the expression of CTLA-4 in SW480 cells. Collectively, capecitabine can inhibit the expression of CTLA-4 in CRC cells and might bridge the immunotherapy approaches with chemotherapy

    Throughput analysis of full-duplex communication cognitive radio network

    Get PDF
    In this paper we deal with the throughput of full-duplex cognitive communication radio which exploits unused band of primary user (PU) network. Classical cognitive radio uses half-duplex communication spectrum sensing to perform spectrum sensing and data transmission at different time intervals. It’s well-established fact that in half-duplex communication cognitive radio spectrum sensing time increases at low SNR which gives rise to lesser data transmission time for secondary user (SU) and hence results in less throughput for SU. It’s useful idea to do spectrum sensing and data transmission at the same time with two different antennas co-located on the SU transceiver. This shall not only guarantee high probability of detection of PU but also increased data transmission which means more throughput for SU. However, simultaneous sensing and data transmission has inherent problem of self-interference. One of the possible solution is to use polarisation discrimination in which sensing and data transmission antennas must use different polarisation. This is feasible if there is prior information about the polarisation of the signals emitted by the PUs. It shall be of special interest to assess throughput using analytical expressions for probability of detection PD, probability of false alarm PFA at various values of SNR for time-slotted cognitive radio which uses half-duplex spectrum sensing and non-time-slotted cognitive radio which uses full-duplex communication cognitive radio

    The expression pattern of VISTA in the PBMCs of relapsing-remitting multiple sclerosis patients: A single-cell RNA sequencing-based study

    Get PDF
    Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Dysregulated immune responses have been implicated in MS development. Growing evidence has indicated that inhibitory immune checkpoint molecules can substantially regulate immune responses and maintain immune tolerance. V-domain Ig suppressor of T cell activation (VISTA) is a novel inhibitory immune checkpoint molecule that can suppress immune responses; however, its expression pattern in the peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RRMS) has not thoroughly been studied. Herein, we evaluated Vsir expression in PBMCs of RRMS patients and characterized the expression pattern of the Vsir in the PBMCs of MS patients. Besides, we investigated the effect of fingolimod, IFNβ-1α, glatiramer acetate (GA), and dimethyl fumarate (DMF) on Vsir expression in PBMCs of RRMS patients. Our results have shown that Vsir expression is significantly downregulated in the PBMCs of patients with RRMS. Besides, the single-cell RNA sequencing results have demonstrated that Vsir expression is downregulated in classical monocyte, intermediate monocytes, non-classical monocytes, myeloid DCs (mDC), Plasmacytoid dendritic cells (pDCs), and naive B-cells of PBMCs of MS patients compared to the control. In addition, DMF, IFNβ-1α, and GA have significantly upregulated Vsir expression in the PBMCs of RRMS patients. Collectively, the current study has shed light on Vsir expression in the PBMCs of MS patients; however, further studies are needed to elucidate the significance of VISTA in the mentioned immune cells

    Improved spectrum sensing for OFDM cognitive radio in the presence of timing offset

    Get PDF
    Spectrum sensing is an important aspect of an (interweave) cognitive radio network. In the particular case of orthogonal frequency division multiplexing (OFDM) transmission, many previous spectrum sensing algorithms have utilized the unique correlation properties provided by the cyclic prefix (CP). However, they have also had to both estimate and compensate for the inherent timing offset of a practical system. This is because the timing offset will affect both the test statistic and the threshold, and the inaccurate estimation of timing offset will lead to poor performance. So in this paper, we propose an improved CP detector by constructing a likelihood ratio test (LRT) based on the multivariate probability density functions (pdf) of a particular auto-correlation vector that is chosen to exploit the existence of the CP. This leads to ‘probability of detection’ (Pd) and ‘probability of false alarm’ (Pf) terms that are actually independent of timing offset, and we can get an accurate threshold without estimating timing offset. Simulation results illustrate that the proposed algorithm outperforms existing methods, even for low SNR values. Finally, we show how the algorithm’s parameters must be carefully chosen in a trade-off between spectrum sensing success and overall system performance
    corecore