
Lodro, Mir Muhammad and Greedy, Steeve and Mahoto, 
Naeem A. and Unar, Mukhtiar A. (2017) Throughput 
analysis of full-duplex communication cognitive radio 
network. Wireless Personal Communications, 97 (2). pp. 
3081-3095. ISSN 1572-834X 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/44722/1/Mir%20Lodro%20article.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be 
reused according to the conditions of the licence.  For more details see: 
http://creativecommons.org/licenses/by/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/84637038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


Throughput Analysis of Full-Duplex Communication
Cognitive Radio Network

Mir Muhammad Lodro1 • Steeve Greedy2 • Naeem A. Mahoto3 •

Mukhtiar A. Unar3

� The Author(s) 2017. This article is an open access publication

Abstract In this paper we deal with the throughput of full-duplex cognitive communi-

cation radio which exploits unused band of primary user (PU) network. Classical cognitive

radio uses half-duplex communication spectrum sensing to perform spectrum sensing and

data transmission at different time intervals. It’s well-established fact that in half-duplex

communication cognitive radio spectrum sensing time increases at low SNR which gives

rise to lesser data transmission time for secondary user (SU) and hence results in less

throughput for SU. It’s useful idea to do spectrum sensing and data transmission at the

same time with two different antennas co-located on the SU transceiver. This shall not only

guarantee high probability of detection of PU but also increased data transmission which

means more throughput for SU. However, simultaneous sensing and data transmission has

inherent problem of self-interference. One of the possible solution is to use polarisation

discrimination in which sensing and data transmission antennas must use different polar-

isation. This is feasible if there is prior information about the polarisation of the signals

emitted by the PUs. It shall be of special interest to assess throughput using analytical

expressions for probability of detection PD, probability of false alarm PFA at various values

of SNR for time-slotted cognitive radio which uses half-duplex spectrum sensing and non-

time-slotted cognitive radio which uses full-duplex communication cognitive radio.
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1 Introduction

Recently because of the influx of smartphone and due to digital dividend there has been

increased trend for application that demand high data rates. Due to digital dividend and

shift in user pattern a lot of under-utilised spectrum is observed typically in VHF and UHF

band of electromagnetic spectrum and such sparsely used bands are also known as TV

white spaces (TVWS). Cognitive radio (CR) has been considered as a powerful technique

to increase the spectral efficiency by enabling unlicensed secondary users to access

underutilized spectrum opportunistically. Federal Communication Commission (FCC) in

USA and Office Communication (Ofcom) in UK have legalised the usage of TVWS in

VHF and UHF part of the spectrum. In USA non-contiguous TVWS are located in fre-

quency range of 54–698 MHz and portion of frequency ranging from 470 MHz to 790

MHz exists in Europe. There are some new standards which involve cognitive radio

principle few to mention are wireless metropolitan area network (WMAN) IEEE 802.22

for broadband applications in remote areas, wireless local area network (WLAN) standard

known as IEEE 802.11af which uses master and slave architecture and notion of white

space database, IEEE 802.15.4m an low data rate short range wireless personal area

network (WPAN) system with cognitive radio and a host of other network types shall

experience cognitive radio based transformation. Performance of cognitive radio is

assessed by the type of detector it uses and the number of sub-bands it can harness and

relinquish if the incumbent user reactivates and reclaims its licensed band. A number of

detectors has been considered for the implementation in CR transceivers for example

energy detector [1, 2], matched filter detector [3, 4], Eigen-value based detector [5, 6],

detectors involving cyclostationarity [7] and wavelet-based detection [8] etc.

2 Background Study

The problem of reactivation failure is associated with the non-time-slotted cognitive radio

networks (NTS-CRN) where the PU and SU traffic is not synchronised i.e. PU randomly

leaves and reclaims its licensed channel. In time-slotted CRN PU and SU traffic is syn-

chronised i.e. SU transmits after its senses that there is no incumbent user present on that

band. In non-time-slotted CRN PU may sense the busy channel since it can’t distinguish

between PUs traffic and SU traffic and thus goes into back off stage and retransmits with

persistent carrier sense multiple access (p-CSMA) which might result in collision and

ultimately affect the PU throughput if the SU doesn’t sense the PU reactivation and leave

licensed PU sub-channel. For time-slotted CRN we use half-duplex spectrum sensing

scheme and medium access control (MAC) protocol. Similarly, for non-time-slotted CRN a

novel full-duplex spectrum sensing scheme and a novel cognitive medium access control

(CMAC) protocol can be used.

Liang et al. [9] developed seminal expression on sensing-throughput of cognitive radio

where he found optimal sensing period which achieves maximum throughput and reference

[10] proposes full-duplex spectrum sensing algorithms for non-time-slotted full-duplex

cognitive radio. Because of ubiquitous nature of OFDM based communication systems

work in [11] focuses on sensing-throughput tradeoff of the OFDM based cognitive radio

and the probability of false alarm expression in Nakagami-m and Rician fading channels.

Reference [12] studies the interference caused by SU due to missed detection of PU and the

extent to which PU is affected in terms of capacity-outage performance under Rayleigh and
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Nakagami fading channels and suggests beacon placement at transmitter and receiver.

Novel and computationally efficient detection algorithm for OFDM based PUs is discussed

in [13] where the performance of various detectors in AWGN and Rayleigh fading

channels is also assessed. Multi-antenna sensing and Generalized Likelihood Ratio (GLR)

detector is investigated when channel gain, noise variance and PU signal values are

unknown [14]. Ghassemi et al. [15] proposes peak-to-average-power ratio (PAPR)

reduction in non-contiguous OFDM (NC-OFDM) using selected mapping (SLM) sequence

which results in out-of-band (OOB) reduction and improved PAPR and bit error rate (BER)

for NC-OFDM signals, whereas PAPR reduction in OFDM based CR using clockwise

subcarrier activation is presented in [16] and a novel signal cancellation method is pro-

posed in [17] for joint PAPR reduction and sidelobe suppression in NC-OFDM based CR

network. Work in [18] deals with cooperative spectrum sensing with energy-detector over

multipath fading and shadowing with different fusion strategies and using single and

multiple cognitive relays. Work in [19] calculates energy efficiency versus optimal sensing

time for CR network. Reference [20] presents the cooperative wideband spectrum sensing

over fading channels and models the aliasing effects of sub-Nyquist sampling. Yunfei

Chen [21] gave an energy detector with enhanced performance for random signals in

Gaussian noise. Energy efficient cognitive radio for joint spectrum sensing and data

transmission which uses co-located layer of relays with amplify-and-forward strategy to

relay data from source to destination has been proposed in [22].

The remainder of the paper is structured as follows: Sect. 3 explains Full-duplex

communication for non-time-slotted cognitive radio and the control model for NTS-CR

and TS-CR. It also presents the Full-duplex spectrum sensing algorithm for FDC-CR with

which it declares the absence and presence of PU. Section 1 defines the system model for

NTS-CR and presents the probability of detection and probability of false alarm used for

receiver operating characteristic curve (ROC) to see the detector performance and the

throughput for secondary user. Following this Sect. 5 compares the throughput of half-

duplex and full-duplex communication cognitive radio. Finally, Sect. 6 contains the

numerical results on probability of detection, probability of false alarm, probability of

missed detection and throughput of the HDC and FDC cognitive radio.

Licensed TV Band Channels

PU 1

PU 2

PU 3

PU N

SU 1

SU 2

SU 3

SU M

-N PUs have high priority
to access the licensed TV band

-M PUs maximise their throughput
given that PUs are protected

Fig. 1 Multi-channel cognitive radio network model
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3 Full-Duplex Communication Non-time Slotted CR

In NTS-CR using FDC-SS we use two antennas for sensing and transmission simultane-

ously in contrast to TS-CR in which one antenna is used for periodic sensing and trans-

mission. In TS-CR MAC frame is divided into sensing-time and data transmission time. It

is a proven fact that PU protection is guaranteed at increased sensing time which reduces

the data transmission time, thereby affecting the throughput of SU. In the following section

we discuss problem of reactivation failure for NTS-CR network (NTS-CRN).

3.1 NTS-CRN Control Model

In TS-CRN PU traffic and SU traffic is synchronous i.e. SU scans for the availability of

under-utilised channel in its fixed sensing duration and quits after it performs data trans-

mission in a fixed transmission time. Figure 2 shows control model of the NTS-CRN where

we can see the PU traffic and SU traffic is asynchronous because PU and SU don’t quit and

reclaim the channel within fixed time interval. In NTS-CRN we divide transmission period

of the SU into P sensing periods for sensing the channel with different antenna.

3.2 Reactivation Failure of NTS-CRN

In NTS-CRN since the PU and SU arrive and quite channel randomly therefore collision

may take place if the PU wants to reclaim licensed channel when SU is transmitting. In

this scenario PU can’t recognise the traffic of peer PU or SU i.e. whether licensed

channel is occupied by peer PU or SU, therefore PU goes in back-off stage and transmits

with p-CSMA. If the licensed channel is occupied by SU then collision takes place and

PU goes into back-off stage and senses the channel but if the network time is expired PU

discards the traffic. PU’s such failure to reclaim its licensed channel is known as

reactivation failure. This problem of reactivation failure can be solved with FDC-SS

algorithm as shown in Algorithm 1 in which SU senses for the arrival of PU during

transmission phase.

ON OFF ON

SP TP SP TP SP TP

Transmission Period (TP)

SP-1 SP-2 SP-3 SP-4 SP-P

Fig. 2 Control model for NTS-CR
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3.3 FDC-SS Scheme

Figure 4 shows non-slotted multi-channel cognitive radio network model where PUs use

their L licensed sub-channels and M SUs opportunistically contend for the PU licensed

sub-channels.

4 FDC-SS System Model

We can write the sampled output of CR employing energy-detector as follows:

yðnÞ ¼
ffiffiffi

k
p

hsðnÞ þ wðnÞ n ¼ 0; 1; 2; . . .;N � 1 ð1Þ

where h is channel gain between PU and SU and has Rayleigh distribution. s(n) is sampled

PU signal, w(n) is sampled AWGN with zero mean and variance r2
w i.e. N �ð0; r2

wÞ and k

is self-interference introduced because of the simultaneous sensing and transmission that

takes place in NTS-CR. Where k ¼ 0 means maximum self-interference is introduced and

no self-interference for k ¼ 1. The test statistics using FDC-SS at the output of the energy

detector of NTS-CR can be given as in Eq. 2.

TNðyÞ ¼

1

N

 

X

u

n¼0

j
ffiffiffi

k
p

hsðnÞ þ wðnÞ j2 þ
X

N

n¼uþ1

j wðnÞ j2
!

; if H10

1

N

 

X

v

n¼0

j wðnÞ j2 þ
X

N

n¼vþ1

j
ffiffiffi

k
p

hsðnÞ þ wðnÞ j2
!

; if H01

8

>

>

>

>

>

<

>

>

>

>

>

:

ð2Þ

Where hypothesis H10 means PU is active for first u samples and then becomes inactive for

rest of the samples n ¼ uþ 1 to N. and hypothesis H01 means the PU was inactive for the

first v samples and then became active for rest of the samples n ¼ vþ 1 to N. N is total

number of samples for entire sensing period. Here we consider PU signal s(n) and noise

w(n) as circularly symmetric complex Gaussian (CSCG) which represents signals with

rich-ISI such as OFDM. For large number of samples N we can invoke central limit

theorem (CLT) under hypothesis H10 and the PDF of the test statistics TNy, p10ðxÞ can be

approximated by Gaussian distribution. Thus the PD and PFA of NTS-CR respectively can

be given mathematically as in Eqs. 3 and 4 respectively.
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PFAðn;N; u; kÞ ¼ Pr �
�

TNðyÞ[ n j H10

�

¼
Z 1

n
p10ðxÞdx

¼ Q

 n
r2
w
� u

N
kcps � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
N2

�

kcps þ 1
�2 þ N�u

N2

q

! ð3Þ

PDðn;N; v; kÞ ¼ Pr �
�

TNðyÞ[ n j H01

�

¼
Z 1

n
p01ðxÞdx

¼ Q

 n
r2
u
� N�v

N
kcps � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�v
N2

�

kcps þ 1
�2 þ v

N2

q

! ð4Þ

where n is the threshold of the energy detector employed at the receiver. Now we can set

u ¼ 0; v ¼ 0 and k ¼ 1 in above equations and we can obtain PFAðn;N; u; kÞ and

PDðn;N; v; kÞ for TS-CR as follows:

PFAðn;N; u; kÞ ¼Q

 

� n
r2
w

� 1
�

ffiffiffiffi

N
p
!

ð5Þ

PDðn;N; v; kÞ ¼
 

�

n
r2
w

� cps � 1

�

ffiffiffiffi

N
p

cps þ 1

!

ð6Þ

From above two equations we can see that the PFA and PD for TS-CR are special case of

NTS-CR. For a given �PD, PFA relates to PD and for a given �PFA,PD relates to PFA

respectively as follows [9]:

PFA ¼Q

 

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2cþ 1
p

Q�1
�

�PD

�

þ
ffiffiffiffiffi

sfs
p

c

!

ð7Þ

PD ¼Q

 

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2cþ 1
p

�

Q�1
�

�PFA

�

�
ffiffiffiffiffi

sfs
p

c

�

!

ð8Þ

Similarly, for given ð�PD; �PFAÞ, the minimum number of samples are given by:

Nmin ¼
1

2

	

Q�1ð�PFAÞ � Q�1ð�PDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2cþ 1
p


2

ð9Þ

5 HDC-SS and FDC-SS Sensing-Throughput Comparison

HDC-SS involves MAC frame with duration T which consists of sensing time s and data

transmission time ðT � sÞ. Whereas FDC-SS involves sensing and data transmission time

equal to entire frame duration T with collocated antennas used for spectrum sensing and

data transmission respectively. There are two scenarios for which SU can operate in PU’s

licensed band:
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Scenario I When PU is not present and no false alarm is generated by SU

Scenario II When PU is present but it’s not detected by SU.

In both scenarios the achievable throughputs of the SU link are
�

T�s
T

�

log2

�

1 þ Ps

�

N0

�

and
�

T�s
T

�

log2

�

1 þ Ps

�

Po þ N0

�

respectively. Where Ps = received power of SU, Pp =

PU power as an interference to SU and N0 is the noise power. The probability of occur-

rence of scenario I and scenario II are
�

1 � PFAðn;N; u; kÞ
�

PðH0Þ and
�

1 � PDðn;N; v; kÞ
�

PðH1Þ. Let us say if:

R0ðn;N; u; kÞ ¼
�

T � s
T

�

log2

�

1 þ SNRs

�

�
�

1 � PFAðn;N; u; kÞ
�

PðH0Þ
ð10Þ

R1ðn;N; v; kÞ ¼
�

T � s
T

�

log2

�

1 þ SNRs

SNRp

�

�
�

1 � PDðn;N; v; kÞ
�

PðH1Þ
ð11Þ

Then the average throughput of the SU is:

R ¼ R0ðn;N; u; kÞ þ R1ðn;N; v; kÞ ð12Þ

Now for HDC-SS longer the sensing time s, shorter is the data transmission time T � s
which results in less throughput for SU. Similarly for FDC-SS let us assume that there is no

self-interference and SU operates over entire frame duration T. Following the same steps

we can derive average throughout for NTS-CR with HDC-SS. Now average throughput of

the TS-CR and NTS-CR with HDC-SS and FDC-SS respectively is as follows:

R0ðn;N; u; kÞ þ R1ðn;N; v; kÞ\RF
0 ðn;N; u; kÞ þ RF

1 ðn;N; v; kÞ ð13Þ

�

T � s
T

�

(

log2

�

1 þ SNRs

��

1 � PFAðn;N; u; kÞ
�

PðH0Þ

þ log2

�

1 þ SNRs

1 þ SNRp

��

1 � PDðn;N; v; kÞ
�

PðH1Þ
)

\ log2

�

1 þ SNRs

��

1 � PFAðn;N; u; kÞ
�

PðH0Þ

þ log2

�

1 þ SNRs

1 þ SNRp

��

1 � PDðn;N; v; kÞ
�

PðH1Þ

ð14Þ

From Eq. (13) it is clear that the average throughput of NTS-CR employing FDC-SS is

greater than the throughput of the TS-CR employing HDC-SS.
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6 Numerical Results and Discussion

Figure 3 shows the probability of detection versus energy-detection threshold for the for

NTS-CR without self-interference i.e. k ¼ 1. We can see that the probability of detection

decreases as the threshold increases. It also decreases with the increase in number of

samples for which PU is initially absent i.e from v ¼ 500 to v ¼ 1500. Figure 4 shows the

probability of missed detection versus threshold for NTS-CR with no self-interference. We

can see the probability of missed detection increases with the increase in threshold �. It also

increases with the increase in number of samples assigned to PU for which initially

remains inactive.

Figure 5 shows the probability of detection of TS-CR and NTS-CR with HDC-SS and

FDC-SS spectrum sensing scheme. Here we consider the effect of self-interference and

compare the probability of detection with self-interference and without self-interference.

We can see the PD for TS-CR outperforms all the cases of NTS-CR because the PU exists

for some samples. Moreover, the PD decreases as the energy-detector threshold increases,

it also decreases for NTS-CR with the self-interference and without self-interference.

However, the PD without self-interference is higher than the PD with self-interference, but

the performance gap is very small. Similarly, Fig. 6 shows the probability of missed

detection which increases with the increase in energy-detection threshold. It also increases

with the increase in number of initial sample values for which PU remains inactive. The

probability of missed detection also increases with the increase in self-interference k. There

is small performance gap between probability of missed detection with self-interference

and without self-interference, but there is significant difference in probability of missed

detection for TS-CR and the probability of missed detection when the number of initial

samples for which PU is inactive increase to v ¼ 1500. For example at energy-detection

threshold of n ¼ 1 the probability of missed detection is 0.2 which increases to PMD value
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Fig. 3 Probability of detection versus threshold of TS-CR with HDC-SS and NTS-CR with FDC-SS
without self-interference
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of 0.55 for PU which remains inactive for initial sample values of v ¼ 1500. We sum-

marise different values of PD, PMD and PFA in the following Table 1. Note that we

calculate the PFA when he PU is active initially for u samples and then leave the channel

for rest of the sample values (Tables 1, 2).
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Fig. 4 Probability of missed detection versus threshold of TC-CR with HDC-SS and NTS-CR with FDC-SS
without self-interference
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Fig. 5 Probability of detection versus threshold of TS-CR with HDC-SS and NTS-CR with FDC-CR with
and without interference
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Figures 7 and 8 on probability of false alarm follows our intuition developed after our

earlier discussions on PD and PMD with and without self-interference for TS-CR and NTS-

CR. We can see the probability of false alarm of TS-CR is less when the PU is initially

active for u ¼ 500 to u ¼ 1500 samples and later subsides and leaves the channel empty.

This is also true for the PFA values with self-interference and without self-interference. For
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Fig. 6 Probability of missed detection versus threshold of TS-CR with HDC-SS and NTS-CR with FDC-SS
with and without interference

Table 1 PD, PMD and PFA values for non-time slotted CRN with self-interference and without self-
interference

Threshold (n) # of samples (v) Self-
interference (k)

PD PMD u PFA

1 500 1 0.68 0.32 500 0.70

1 500 0.9 0.65 0.35 500 0.68

1 1500 1 0.28 0.72 1500 0.92

1 1500 0.9 0.25 0.75 1500 0.90

Table 2 Throughput of TS-CR with HDC-SS and NTS-CR with FDC-SS at SNR values of -2 dB

Sensing time
(s) (ms)

Throughput (b / s / Hz):TS-
CR with HDC-SS

Throughput (b / s / Hz): NTS-
CR with FDC-SS

Percent increase
in throughput (%)

6 3.6367 3.8688 5.9

10 3.5899 3.9888 10

12 3.5145 3.9937 11.9

16 3.3557 3.9949 16

M. M. Lodro et al.

123



fixed sample values let us say u ¼ 500 the PFA with interference is little higher than the

PFA without self-interference i.e. k ¼ 0:9, however the performance gap is very small

(Fig. 9). We can expect more degradation in PFA when the self-interference factor is
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Fig. 7 Probability of false alarm versus threshold of TS-CR with HDC-SS and NTS-CR with FDC-SS
without self-interference
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Fig. 8 Probability of false alarm versus threshold of TS-CR with HDC-SS and NTS-CR with FDC-SS with
and without interference
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reduced from k ¼ 0:9 to k ¼ 0:1 where sever interference can be expected. Figure 10

shows the statistical attestation of the throughput of NTS-CR which uses FDC-SS is greater

than the throughput of TS-CR at different vales of SNRs.
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Fig. 9 Throughput versus sensing time of TS-CR with HDC-SS and NTS-CR with FDC-SS at SNR values
of -2 and �4 dB respectively
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Fig. 10 Bar graph of throughput versus sensing time for TS-CR with HDC-SS and NTS-CR with FDC-SS
at SNR values of -2 and -4 dB respectively
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7 Conclusion

Cognitive Radio revolves around two basic and important QoS indicators which is

increased throughput yield for SU and maximum protection to PU. Half-duplex commu-

nication cognitive radio which first senses and then according to sensing statistics performs

data transmission. This shall reduce data transmission time for half-duplex communication

cognitive radio at low SNR regimes which means throughput compromise for SU. We have

seen that Full-duplex communication cognitive radio with full-duplex spectrum sensing

outperforms half-duplex with half-duplex spectrum sensing schemes. We have calculated

the PD,PFA, PD and throughput of the TS-CR and the NTS-CR with half and full duplex

spectrum sensing. It has been proved that full-duplex cognitive radio yields more

throughout than the half-duplex spectrum. We obtain approximately 5:9% increase for

NTS-CR with FDC-SS at sensing time of 6 ms. Similarly, 10% of increase in throughput at

sensing time of 10 ms has been observed for NTS-CR with FDC-SS for SNR values of -2

dB.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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