129 research outputs found

    Isolation and sequence of cDNA encoding the motilin precursor from monkey intestine. Demonstration of the motilin precursor in the monkey brain

    Get PDF
    AbstractThe motilin precursor cDNA has been isolated and sequenced from a cDNA library prepared from monkey small intestine. The sequence indicates a 345 bp open reading frame, a 63 bp 5′ untranslated region and a 154 bp 3′ untranslated region. The sequence encodes a 115 amino acid motilin precursor composed of a 25 amino acid signal peptide, the 22 amino acid motilin peptide and a 68 amino acid motilin associated peptide (MAP). Compared with the human motilin precursor cDNA, there are two amino acid substitutions in the signal peptide, one in motilin and four in the MAP. The presence of the motilin precursor in hypothalamus, hippocampus and cerebellum was demonstrated by RT-PCR

    Intragastric infusion of denatonium benzoate attenuates interdigestive gastric motility and hunger scores in healthy female volunteers

    Get PDF
    Background: Denatonium benzoate (DB) has been shown to influence ongoing ingestive behavior and gut peptide secretion.Objective: We studied how the intragastric administration of DB affects interdigestive motility, motilin and ghrelin plasma concentrations, hunger and satiety ratings, and food intake in healthy volunteers.Design: Lingual bitter taste sensitivity was tested with the use of 6 concentrations of DB in 65 subjects. A placebo or 1 μmol DB/kg was given intragastrically to assess its effect on fasting gastrointestinal motility and hunger ratings, motilin and ghrelin plasma concentrations, satiety, and caloric intake.Results: Women (n = 39) were more sensitive toward a lingual bitter stimulus (P = 0.005) than men (n = 26). In women (n = 10), intragastric DB switched the origin of phase III contractions from the stomach to the duodenum (P = 0.001) and decreased hunger ratings (P = 0.04). These effects were not observed in men (n = 10). In women (n = 12), motilin (P = 0.04) plasma concentrations decreased after intragastric DB administration, whereas total and octanoylated ghrelin were not affected. The intragastric administration of DB decreased hunger (P = 0.008) and increased satiety ratings (P = 0.01) after a meal (500 kcal) in 13 women without affecting gastric emptying in 6 women. Caloric intake tended to decrease after DB administration compared with the placebo (mean ± SEM: 720 ± 58 compared with 796 ± 45 kcal; P = 0.08) in 20 women.Conclusions: Intragastric DB administration decreases both antral motility and hunger ratings during the fasting state, possibly because of a decrease in motilin release. Moreover, DB decreases hunger and increases satiety ratings after a meal and shows potential for decreasing caloric intak

    Sensing of Fatty Acids for Octanoylation of Ghrelin Involves a Gustatory G-Protein

    Get PDF
    Ghrelin is an important regulator of energy--and glucose homeostasis. The octanoylation at Ser(3) is essential for ghrelin's biological effects but the mechanisms involved in the octanoylation are unknown. We investigated whether the gustatory G-protein, α-gustducin, and the free fatty acid receptors GPR40 and GPR120 are involved in the fatty acid sensing mechanisms of the ghrelin cell.Wild-type (WT) and α-gustducin knockout (gust(-/-)) mice were fed a glyceryl trioctanoate-enriched diet (OD) during 2 weeks. Ghrelin levels and gastric emptying were determined. Co-localization between GPR40, GPR120 and ghrelin or α-gustducin/α-transducin was investigated by immunofluorescence staining. The role of GPR120 in the effect of medium and long chain fatty acids on the release of ghrelin was studied in the ghrelinoma cell line, MGN3-1. The effect of the GPR40 agonist, MEDICA16, and the GPR120 agonist, grifolic acid, on ghrelin release was studied both in vitro and in vivo.Feeding an OD specifically increased octanoyl ghrelin levels in the stomach of WT mice but not of gust(-/-) mice. Gastric emptying was accelerated in WT but not in gust(-/-) mice. GPR40 was colocalized with desoctanoyl but not with octanoyl ghrelin, α-gustducin or α-transducin positive cells in the stomach. GPR120 only colocalized with ghrelin in the duodenum. Addition of octanoic acid or α-linolenic acid to MGN3-1 cells increased and decreased octanoyl ghrelin levels, respectively. Both effects could not be blocked by GPR120 siRNA. MEDICA16 and grifolic acid did not affect ghrelin secretion in vitro but oral administration of grifolic acid increased plasma ghrelin levels.This study provides the first evidence that α-gustducin is involved in the octanoylation of ghrelin and shows that the ghrelin cell can sense long- and medium-chain fatty acids directly. GPR120 but not GPR40 may play a role in the lipid sensing cascade of the ghrelin cell

    The therapeutic effect of the neuropeptide hormone somatostatin on Schistosoma mansoni caused liver fibrosis

    Get PDF
    BACKGROUND: The neuropeptide somatostatin is one of the major regulatory peptides in the central nervous system and the digestive tract. Our recent work has delineated an association between fibrosis and low levels of endogenous somatostatin plasma levels in Schistosoma mansoni infected subjects. Based on these results this paper explores the therapeutic potential of somatostatin in a mouse model of hepatic fibrosis associated with S. mansoni infections. METHODS: Groups of outbred Swiss mice were infected with 100 S. mansoni cercariae, infection maintained till weeks 10 or 14, and then somatostatin therapy delivered in two regimens – Either a one or a two-day treatment. All animals were sacrificed one week after therapy and controlled for liver, spleen and total body weight. Circulating somatostatin levels in mice plasma were measured at the time of sacrifice by means of a radio-immuno assay. GraphPad Prism(® )was used for statistical calculations. RESULTS: Somatostatin administration showed little toxicity, probably due to its short half-life. Total liver and spleen weights of S. mansoni infected animals increased over time, with no changes observed due to somatostatin therapy. Total body weights were decreased after infection but were not affected by somatostatin therapy. Snap frozen liver sections were stained with haematoxylin-eosin or Masson's trichrome to study parasite count, hepatocyte status, granuloma size and cellularity. After somatostatin treatment mean egg counts per liver section (43.76 ± 3.56) were significantly reduced as compared to the egg counts in untreated mice after 10 weeks of infection (56.01 ± 3.34) (P = 0.03). Similar significant reduction in parasite egg counts were also observed after somatostatin treatment at 14 weeks of infection (56.62 ± 3.02) as compared to untreated animals (69.82 ± 2.77)(P = 0.006). Fibrosis was assessed from the spectrophotometric determination of tissue hydroxyproline. Infection with S. mansoni caused increased hydroxyproline levels (9.37 ± 0.63 μmol at wk10; 9.65 ± 0.96 μmol at wk14) as compared to uninfected animals (1.06 ± 0.10 μmol). This significant increase in collagen content (P = 0.01; 0.007 respectively) marks the fibrosis observed at these time points. Treatment with somatostatin resulted in a significant decrease in hydroxyproline levels both at wk10 (4.76 ± 0.58 μmol) and at wk14 (5.8 ± 1.13 μmol) (P = 0.01; 0.03 respectively). Endogenous somatostatin levels were increased at wk10 (297 ± 37.24 pg/ml) and wk14 (206 ± 13.30 pg/ml) of infection as compared to uninfected mice (119 ± 11.99 pg/ml) (P = 0.01; 0.008 respectively). Circulating somatostatin levels in infected animals were not significantly affected by somatostatin treatment. Hepatocyte status remained unaltered and granulomas were not remarkably changed in size or cellularity. CONCLUSION: Our experiments reveal an antifibrotic effect of somatostatin in schistosomiasis. We have previously shown that the somatostatin receptors SSTR2 and SSTR3 are present on the parasite egg and worms. We therefore hypothesize that somatostatin reduces either the number of parasite eggs or the secretion of fibrosis inducing-mediators. Our data suggest somatostatin may have therapeutic potential in S. mansoni mediated liver pathology

    Nutrient sensing in the gut: new roads to therapeutics?

    No full text
    The release of gut hormones involved in the control of food intake is dependent on the acute nutritional status of the body, suggesting that chemosensory mechanisms are involved in the control of their release. G protein-coupled taste receptors similar to those in the lingual system, that respond to sweet, bitter, umami, and fatty acids, are expressed in endocrine cells within the gut mucosa, and coordinate, together with other chemosensory signaling elements, the release of hormones that regulate energy and glucose homeostasis. In health, these nutrient sensors are likely to function as inhibitors to excessive nutrient exposure, and their malfunction may be responsible for a variety of metabolic dysfunctions associated with obesity; they may thus be considered as new therapeutic targets.status: publishe

    Chemoreceptors in the Gut

    No full text
    The gastrointestinal tract represents the largest interface between the human body and the external environment. It must continuously monitor and discriminate between nutrients that need to be assimilated and harmful substances that need to be expelled. The different cells of the gut epithelium are therefore equipped with a subtle chemosensory system that communicates the sensory information to several effector systems involved in the regulation of appetite, immune responses, and gastrointestinal motility. Disturbances or adaptations in the communication of this sensory information may contribute to the development or maintenance of disease. This is a new emerging research field in which perception of taste can be considered as a novel key player participating in the regulation of gut function. Specific diets or agonists that target these chemosensory signaling pathways may be considered as new therapeutic targets to tune adequate physiological processes in the gut in health and disease. Expected final online publication date for the Annual Review of Physiology Volume 80 is February 10, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.status: publishe

    The Sweetener-Sensing Mechanisms of the Ghrelin Cell

    No full text
    Carbohydrate administration decreases plasma levels of the 'hunger hormone' ghrelin. The ghrelin cell is co-localized with the sweet taste receptor subunit, TAS1R3, and the gustatory G-protein, gustducin, both involved in the sensing of sweeteners by entero-endocrine cells. This study investigated the role of gustducin-mediated sweet taste receptor signaling on ghrelin secretion in a gastric ghrelinoma cell line, tissue segments and mice. The monosaccharide d-glucose and low-intensity sweetener oligofructose (OFS) decreased (p < 0.001) ghrelin secretion while the high-intensity sweetener sucralose increased (p < 0.001) ghrelin secretion in vitro. These effects were not mediated via the sweet taste receptor or glucose transporters (the sodium-dependent glucose cotransporter SGLT-1 and GLUT2). The effect of these compounds was mimicked ex vivo in gastric and jejunal segments from both wild type (WT) and α-gustducin knockout (α-gust(-/-)) mice. In vivo, the sensing of d-glucose was polarized since intragastric but not intravenous administration of d-glucose decreased (p < 0.05) ghrelin levels in an α-gustducin independent manner which involved inhibition of duodenal ghrelin release. In contrast, neither OFS nor sucralose affected ghrelin secretion in vivo. In conclusion, α-gustducin-mediated sweet taste receptor signaling does not play a functional role in the sensing of carbohydrates, or low- or high-intensity sweeteners by the ghrelin cell.status: publishe

    The Sweetener-Sensing Mechanisms of the Ghrelin Cell

    No full text
    Carbohydrate administration decreases plasma levels of the ‘hunger hormone’ ghrelin. The ghrelin cell is co-localized with the sweet taste receptor subunit, TAS1R3, and the gustatory G-protein, gustducin, both involved in the sensing of sweeteners by entero-endocrine cells. This study investigated the role of gustducin-mediated sweet taste receptor signaling on ghrelin secretion in a gastric ghrelinoma cell line, tissue segments and mice. The monosaccharide d-glucose and low-intensity sweetener oligofructose (OFS) decreased (p &lt; 0.001) ghrelin secretion while the high-intensity sweetener sucralose increased (p &lt; 0.001) ghrelin secretion in vitro. These effects were not mediated via the sweet taste receptor or glucose transporters (the sodium-dependent glucose cotransporter SGLT-1 and GLUT2). The effect of these compounds was mimicked ex vivo in gastric and jejunal segments from both wild type (WT) and α-gustducin knockout (α-gust−/−) mice. In vivo, the sensing of d-glucose was polarized since intragastric but not intravenous administration of d-glucose decreased (p &lt; 0.05) ghrelin levels in an α-gustducin independent manner which involved inhibition of duodenal ghrelin release. In contrast, neither OFS nor sucralose affected ghrelin secretion in vivo. In conclusion, α-gustducin-mediated sweet taste receptor signaling does not play a functional role in the sensing of carbohydrates, or low- or high-intensity sweeteners by the ghrelin cell
    • …
    corecore