5 research outputs found

    Synthesis of bismuth silicate nanostructures with tunable morphology and enhanced photocatalytic activity

    Get PDF
    Bismuth oxide due to its narrow bandgap has attracted significant attention as a photocatalyst. A facile and efficient method to synthesize bismuth silicate with tunable morphology and property is achieved in this study. Bismuth oxide and bismuth silicate have been synthesized by surfactant-assisted modified sol-gel method. The fabricated bismuth oxide nanoparticle samples are characterized by various analytical tools such as X-Ray diffractometer, Infra-Red spectroscopy, Scanning Electron microscopy and UV-Diffuse Reflectance spectroscopy. The synthesized nanoparticles exhibit excellent photocatalytic activity for the degradation of Rhodamine B dye in aqueous medium. Bismuth silicate exerts more satisfactory catalytic property and outstanding reusability compared to pure bismuth oxide. The superior stability and enhanced activity enables the application of bismuth silicate as a photocatalyst for environmental remediation

    Synthesis of bismuth silicate nanostructures with tunable morphology and enhanced photocatalytic activity

    Get PDF
    170-174Bismuth oxide due to its narrow bandgap has attracted significant attention as a photocatalyst. A facile and efficient method to synthesize bismuth silicate with tunable morphology and property is achieved in this study. Bismuth oxide and bismuth silicate have been synthesized by surfactant-assisted modified sol-gel method. The fabricated bismuth oxide nanoparticle samples are characterized by various analytical tools such as X-Ray diffractometer, Infra-Red spectroscopy, Scanning Electron microscopy and UV-Diffuse Reflectance spectroscopy. The synthesized nanoparticles exhibit excellent photocatalytic activity for the degradation of Rhodamine B dye in aqueous medium. Bismuth silicate exerts more satisfactory catalytic property and outstanding reusability compared to pure bismuth oxide. The superior stability and enhanced activity enables the application of bismuth silicate as a photocatalyst for environmental remediation

    Metal organic frameworks in biomedicine: Innovations in drug delivery

    No full text
    Metal-organic frameworks (MOFs) have emerged as a class of versatile materials, finding extensive applications in drug delivery because of their unique properties and flexible design. This comprehensive review aims to give a broad perspective on the recent advancements in the area of drug delivery applications using MOFs. The fundamental characteristics of MOFs, highlighting their exceptional porosity, high surface area, and tuneable framework structures, enable MOFs to serve as ideal drug carriers, allowing efficient drug loading and controlled release. The review delves into the various ligands and metal ions employed for drug encapsulation. These include physical encapsulation, covalent bonding, and host-guest interactions, each offering distinct advantages for diverse types of drugs and therapeutic applications. The importance of tailoring MOF properties to optimize drug loading capacity, stability, and release kinetics has been emphasized. Additionally, the explorations involve delving into the mechanisms of drug release from MOFs, with factors such as pH, temperature, and external stimuli that can be harnessed to trigger controlled drug release. The utilization of MOFs in combination therapies, such as co-delivery of multiple drugs or integrating imaging agents, has also been examined. Numerous examples of MOFs used for drug delivery, encompassing both in-vitro and in-vivo studies, covering a wide range of therapeutic areas, including cancer treatment, antimicrobial therapy, and targeted drug delivery, are included. Additionally, the review addresses the challenges and future perspectives in the development of MOFs for drug delivery. Strategies to improve MOF stability, biocompatibility, and scalability are discussed, along with the understanding of MOF-drug interaction and potential toxicity concerns. With their tuneable properties, high loading capacities, and controlled release capabilities, MOFs hold exceptional capabilities that promise to enhance the efficacy of therapeutic interventions. Continued research and development in this area can pave way for the translation of MOFs into clinical applications in the near future
    corecore