156 research outputs found

    S-Band QPSK Transmitter for Picosatellites

    Get PDF
    The small satellite field has become popular amongst academia, amateur satellite (AMSAT) community, and commercial businesses due to the miniaturization of components and smaller form factors. Specifically, the picosatellite structure has gained attraction for its size and affordability of launch fees. However, the size constraint makes it difficult to generate power and limits the transmit power for downlink. Therefore, efficient data modulation is key to providing high data downlink rates. Also, the typical VHF and UHF frequency spectrum used for satellites is getting congested. Hence, the higher frequency bands such as S-band and X-band are gaining attraction and offer higher data bandwidth. To address both issues, an architecture to implement QPSK modulation for S-band operation is proposed. The design is focused on low-power picosatellites and the implementation is targeted for academia and the AMSAT community

    Improving Ground Station by Reducing System Noise and Losses

    Get PDF
    This paper presents the GMU SatCom Ground Station design and implementation which is dedicated to increasing the quality of a communication downlink by reducing system noises and losses in the receiver path. The design follows practices of the Earth-Moon-Earth (EME) communication community. This effort was focused on the design of the LFA-type Yagi antennas, lightweight ultra-low noise amplifiers, small BPF filters, and combining polarizations through Software Define Radio (SDR) rather than at the antenna feed. All designs presented were implemented and tested. While the UHF path had a priority in our effort, a design of the VHF path is also explained. The paper details design data, characteristics, schematics, implementation, and guidance necessary for teams to design and build their own similar system

    Clinical Spectrum of Recurrent Urinary Tract Infections: A Single-Center Study

    Get PDF
    A retrospective observational study was undertaken to evaluate the clinical profile of recurrent urinary tract infections (UTIs) in a tertiary care hospital. Patients <18 years, kidney-transplant recipients, those on immunosuppressive agents and pregnant patients were excluded. Patients with ≥2 episodes of culture positive UTIs were included. Demographic details, investigations and treatment were recorded. Out of total 48 patients, 18 were female and 30 male. The common manifestations were acute pyelonephritis (52%), emphysematous pyelonephritis (20%) and cystitis (25%). Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (48%) was the most frequent organism isolated followed by Klebsiella spp. (29%) and Pseudomonas spp. (23%). Recurrent episodes of UTI with same organisms were noted in 62% patients. Death occurred in 12.5% patients due to septic shock. Renal calculi (24%) and double J (DJ) stent placement (30%) were associated with recurrent UTIs, though this was not statistically significant. Resistance to higher antibiotics (colistin, carbapenems, piperacillin-tazobactam, cefoperazone-sulbactam, third-generation cephalosporins) (65.4%, r = 0.81), diabetes (62.5%, r = 0.79), urological procedure (39.5%, r = 0.68), prior hospitalization (75%, r = 0.84), history of UTI prior to the study period (44%, r = 0.72) and need for per urethral catheter (PUC) beyond 7 days (35%, r = 0.74) had significant correlation with recurrent UTIs

    Non- albicans Candida

    Get PDF
    The very nature of infectious diseases has undergone profound changes in the past few decades. Fungi once considered as nonpathogenic or less virulent are now recognized as a primary cause of morbidity and mortality in immunocompromised and severely ill patients. Candida spp. are among the most common fungal pathogens. Candida albicans was the predominant cause of candidiasis. However, a shift toward non-albicans Candida species has been recently observed. These non-albicans Candida species demonstrate reduced susceptibility to commonly used antifungal drugs. In the present study, we investigated the prevalence of non-albicans Candida spp. among Candida isolates from various clinical specimens and analysed their virulence factors and antifungal susceptibility profile. A total of 523 Candida spp. were isolated from various clinical specimens. Non-albicans Candida species were the predominant pathogens isolated. Non-albicans Candida species also demonstrated the production of virulence factors once attributed to Candida albicans. Non-albicans Candida demonstrated high resistance to azole group of antifungal agents. Therefore, it can be concluded that non-albicans Candida species have emerged as an important cause of infections. Their isolation from clinical specimen can no longer be ignored as a nonpathogenic isolate nor can it be dismissed as a contaminant

    Virulence Factors Contributing to Pathogenicity of Candida tropicalis

    Get PDF
    The incidence of invasive candidiasis has increased over the past few decades. Although Candida albicans remains by far the most common species encountered, in recent years shift towards non-albicans Candida species like Candida tropicalis is noted. Here in this study we determined the virulence factors and antifungal susceptibility profile of 125 C. tropicalis isolated from various clinical specimens. Biofilm formation was seen in 53 (42.4%) isolates. Coagulase production was noted in 18 (14.4%) isolates. Phospholipase enzyme was the major virulent factor produced by C. tropicalis isolates. A total of 39 biofilm forming isolates showed phospholipase activity. Proteinase activity was demonstrated by 65 (52%) isolates. A total of 38 (30.4%) isolates showed haemolytic activity. Maximum isolates demonstrated resistance to fluconazole. Fluconazole resistance was more common in C. tropicalis isolated from blood cultures. Antifungal resistance was more in isolates possessing the ability to produce phospholipase and biofilm. C. tropicalis exhibit a great degree of variation not only in their pathogenicity but also in their antifungal susceptibility profile. The identification of virulence attributes specific for each species and their correlation with each other will aid in the understanding of the pathogenesis of infection

    Portuguese honeys as antimicrobial agents against Candida species

    Get PDF
    Background and aim Honey has been recognized worldwide for its antioxidant, anti-tumor, anti-inflammatory and antimicrobial properties. Among them, the antifungal properties associated to honey make it an attractive alternative treatment for Candida-associated infections, particularly for topical application to the mucous membranes and skin. In this sense, the main purpose of this work was to evaluate physicochemical properties of five Portuguese honeys and Manuka honey (an Australian honey with well recognized medical proprieties, used as control) and to evaluate the antifungal activity in Candida species planktonic and biofilm assays. Experimental procedure Pollen analysis, pH determination, color, concentration of protein and methylglyoxal, conductivity, total phenolics and flavonoids, hydrogen peroxide concentration, and characterization by differential scanning calorimetry in honey samples were determined. Additionally, the effect of honeys on planktonic growth of Candida was initially evaluated by determination of the minimum inhibitory concentrations. Then, the same effect of those honeys was evaluated in biofilms, by Colony Forming Units enumeration. Results and conclusion It has been shown that Portuguese heather (Erica cinereal) honey presented the most similar physicochemical properties to manuka honey (specially phenolic and flavonoids contents). The five Portuguese honeys under study, presented in general a potent activity against planktonic multi-resistant yeast pathogens (several clinical isolates and reference strains of Candida species) and S. aureus and P. aeruginosa bacteria cultures. Additionally, it was also concluded that Portuguese heather honey (50% and 75% (w/v)) can also act as a good Candida species biofilm reducer, namely for C. tropicalis.This study was supported by the Portuguese Foundation for Science and Technology (FCT), Portugal, under the scope of the strategic funding of UIDBB/04469/2020020 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund, Portugal, under the scope of Norte 2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    The NF-kappa B inhibitor, celastrol, could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gambogic acid (GA) is a major active ingredient of gamboge, a widely used traditional Chinese medicine that has been reported to be a potent cytotoxic agent against some malignant tumors. Many studies have shown that the NF-kappa B signaling pathway plays an important role in anti-apoptosis and the drug resistance of tumor cells during chemotherapy. In this study, the effects and mechanisms of GA and the NF-kappa B inhibitor celastrol on oral cancer cells were investigated.</p> <p>Methods</p> <p>Three human oral squamous cell carcinoma cell lines, Tca8113, TSCC and NT, were treated with GA alone, celastrol alone or GA plus celastrol. Cytotoxicity was assessed by MTT assay. The rate of apoptosis was examined with annexin V/PI staining as well as transmission electronic microscopy in Tca8113 cells. The level of constitutive NF-kappa B activity in oral squamous cell carcinoma cell lines was determined by immunofluorescence assays and nuclear extracts and electrophoretic mobility shift assays (EMSAs) <it>in vitro</it>. To further investigate the role of NF-kappa B activity in GA and celastrol treatment in oral squamous cell carcinoma, we used the dominant negative mutant SR-IκBα to inhibit NF-kappa B activity and to observe its influence on the effect of GA.</p> <p>Results</p> <p>The results showed that GA could inhibit the proliferation and induce the apoptosis of the oral squamous cell carcinoma cell lines and that the NF-kappa B pathway was simultaneously activated by GA treatment. The minimal cytotoxic dose of celastrol was able to effectively suppress the GA-induced NF-kappa B pathway activation. Following the combined treatment with GA and the minimal cytotoxic dose of celastrol or the dominant negative mutant SR-IκBα, proliferation was significantly inhibited, and the apoptotic rate of Tca8113 cells was significantly increased.</p> <p>Conclusion</p> <p>The combination of GA and celastrol has a synergistic antitumor effect. The effect can be primarily attributed to apoptosis induced by a decrease in NF-kappa B pathway activation. The NF-kappa B signaling pathway plays an important role in this process. Therefore, combining GA and celastrol may be a promising modality for treating oral squamous cell carcinoma.</p

    Randomized controlled phase I/II study to investigate immune stimulatory effects by low dose radiotherapy in primarily operable pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficiencies of T cell based immunotherapies are affected by insufficient migration and activation of tumor specific effector T cells in the tumor. Accumulating evidence exists on the ability of ionizing radiation to modify the tumor microenvironment and generate inflammation. The aim of this phase I/II clinical trial is to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with pancreatic cancer.</p> <p>Methods/Design</p> <p>This trial has been designed as an investigator initiated; prospective randomised, 4-armed, controlled Phase I/II trial. Patients who are candidates for resection of pancreatic cancer will be randomized into 4 arms. A total of 40 patients will be enrolled. The patients receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation precisely targeted to their pancreatic carcinoma. Radiation will be delivered by external beam radiotherapy using a 6 MV Linac with IMRT technique 48 h prior to the surgical resection. The primary objective is the determination of an active local external beam radiation dose, leading to tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include local tumor control and recurrence patterns, survival, radiogenic treatment toxicity and postoperative morbidity and mortality, as well as quality of life. Further, frequencies of tumor reactive T cells in blood and bone marrow as well as whole blood cell transcriptomics and plasma-proteomics will be correlated with clinical outcome. An interim analysis will be performed after the enrolment of 20 patients for safety reasons. The evaluation of the primary endpoint will start four weeks after the last patient's enrolment.</p> <p>Discussion</p> <p>This trial will answer the question whether a low dose radiotherapy localized to the pancreatic tumor only can increase the number of tumor infiltrating T cells and thus potentially enhance the antitumor immune response. The study will also investigate the prognostic and predictive value of radiation-induced T cell activity along with transcriptomic and proteomic data with respect to clinical outcome.</p> <p>Trial registration</p> <p>ClinicalTrials.gov - <a href="http://www.clinicaltrials.gov/ct2/show/NCT01027221">NCT01027221</a></p

    Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemoprevention, which includes the use of synthetic or natural agents (alone or in combination) to block the development of cancer in human beings, is an extremely promising strategy for cancer prevention. Cinnamon is one of the most widely used herbal medicines with diverse biological activities including anti-tumor activity. In the present study, we have reported the anti-neoplastic activity of cinnamon in cervical cancer cell line, SiHa.</p> <p>Methods</p> <p>The aqueous cinnamon extract (ACE-<it>c</it>) was analyzed for its cinnamaldehyde content by HPTLC analysis. The polyphenol content of ACE-<it>c </it>was measured by Folin-Ciocalteau method. Cytotoxicity analysis was performed by MTT assay. We studied the effect of cinnamon on growth kinetics by performing growth curve, colony formation and soft agar assays. The cells treated with ACE-<it>c </it>were analyzed for wound healing assay as well as for matrix metalloproteinase-2 (MMP-2) expression at mRNA and protein level by RT-PCR and zymography, respectively. Her-2 protein expression was analyzed in the control and ACE-<it>c </it>treated samples by immunoblotting as well as confocal microscopy. Apoptosis studies and calcium signaling assays were analyzed by FACS. Loss of mitochondrial membrane potential (Δψ<sub>m</sub>) in cinnamon treated cells was studied by JC-1 staining and analyzed by confocal microscopy as well as FACS.</p> <p>Results</p> <p>Cinnamon alters the growth kinetics of SiHa cells in a dose-dependent manner. Cells treated with ACE-<it>c </it>exhibited reduced number of colonies compared to the control cells. The treated cells exhibited reduced migration potential that could be explained due to downregulation of MMP-2 expression. Interestingly, the expression of Her-2 oncoprotein was significantly reduced in the presence of ACE-<it>c</it>. Cinnamon extract induced apoptosis in the cervical cancer cells through increase in intracellular calcium signaling as well as loss of mitochondrial membrane potential.</p> <p>Conclusion</p> <p>Cinnamon could be used as a potent chemopreventive drug in cervical cancer.</p
    • …
    corecore