26 research outputs found
Antibodies Elicited in Response to EBNA-1 May Cross-React with dsDNA
Several genetic and environmental factors have been linked to Systemic Lupus Erythematosus (SLE). One environmental trigger that has a strong association with SLE is the Epstein Barr Virus (EBV). Our laboratory previously demonstrated that BALB/c mice expressing the complete EBNA-1 protein can develop antibodies to double stranded DNA (dsDNA). The present study was undertaken to understand why anti-dsDNA antibodies arise during the immune response to EBNA-1.In this study, we demonstrated that mouse antibodies elicited in response to EBNA-1 cross-react with dsDNA. First, we showed that adsorption of sera reactive with EBNA-1 and dsDNA, on dsDNA cellulose columns, diminished reactivity with EBNA-1. Next, we generated monoclonal antibodies (MAbs) to EBNA-1 and showed, by several methods, that they also reacted with dsDNA. Examination of two cross-reactive MAbs--3D4, generated in this laboratory, and 0211, a commercial MAb--revealed that 3D4 recognizes the carboxyl region of EBNA-1, while 0211 recognizes both the amino and carboxyl regions. In addition, 0211 binds moderately well to the ribonucleoprotein, Sm, which has been reported by others to elicit a cross-reactive response with EBNA-1, while 3D4 binds only weakly to Sm. This suggests that the epitope in the carboxyl region may be more important for cross-reactivity with dsDNA while the epitope in the amino region may be more important for cross-reactivity with Sm.In conclusion, our results demonstrate that antibodies to the EBNA-1 protein cross-react with dsDNA. This study is significant because it demonstrates a direct link between the viral antigen and the development of anti-dsDNA antibodies, which are the hallmark of SLE. Furthermore, it illustrates the crucial need to identify the epitopes in EBNA-1 responsible for this cross-reactivity so that therapeutic strategies can be designed to mask these regions from the immune system following EBV exposure
Pathophysiological lessons from rare associations of immunological disorders
Rare associations of immunological disorders can often tell more than mice and rats about the pathogenesis of immunologically mediated human kidney disease. Cases of glomerular disease with thyroiditis and Graves’ disease and of minimal change disease with lymphoepithelioma-like thymic carcinoma and lymphomatoid papulosis were recently reported in Pediatric Nephrology. These rare associations can contribute to the unraveling of the pathogenesis of membranous nephropathy (MN) and minimal change disease (MCD) and lead to the testing of novel research hypotheses. In MN, the target antigen may be thyroglobulin or another thyroid-released antigen that becomes planted in the glomerulus, but other scenarios can be envisaged, including epitope spreading, polyreactivity of pathogenic antibodies, and dysregulation of T regulatory cells, leading to the production of a variety of auto-antibodies with different specificities [immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX syndrome)]. The occurrence of MCD with hemopathies supports the role of T cells in the pathogenesis of proteinuria, although the characteristics of those T cells remain to be established and the glomerular permeability factor(s) identified
Two Major Autoantibody Clusters in Systemic Lupus Erythematosus
Systemic lupus erythematosus is a chronic autoimmune disease of complex clinical presentation and etiology and is likely influenced by numerous genetic and environmental factors. While a large number of susceptibility genes have been identified, the production of antibodies against a distinct subset of nuclear proteins remains a primary distinguishing characteristic in disease diagnosis. However, the utility of autoantibody biomarkers for disease sub-classification and grouping remains elusive, in part, because of the difficulty in large scale profiling using a uniform, quantitative platform. In the present study serological profiles of several known SLE antigens, including Sm-D3, RNP-A, RNP-70k, Ro52, Ro60, and La, as well as other cytokine and neuronal antigens were obtained using the luciferase immunoprecipitation systems (LIPS) approach. The resulting autoantibody profiles revealed that 88% of a pilot cohort and 98% of a second independent cohort segregated into one of two distinct clusters defined by autoantibodies against Sm/anti-RNP or Ro/La autoantigens, proteins often involved in RNA binding activities. The Sm/RNP cluster was associated with a higher prevalence of serositis in comparison to the Ro/La cluster (P = 0.0022). However, from the available clinical information, no other clinical characteristics were associated with either cluster. In contrast, evaluation of autoantibodies on an individual basis revealed an association between anti-Sm (P = 0.006), RNP-A (P = 0.018) and RNP-70k (P = 0.010) autoantibodies and mucocutaneous symptoms and between anti-RNP-70k and musculoskeletal manifestations (P = 0.059). Serologically active, but clinically quiescent disease also had a higher prevalence of anti-IFN-α autoantibodies. Based on our findings that most SLE patients belong to either a Sm/RNP or Ro/La autoantigen cluster, these results suggest the possibility that alterations in RNA-RNA-binding protein interactions may play a critical role in triggering and/or the pathogenesis of SLE
Anti-dsDNA Antibodies Promote Initiation, and Acquired Loss of Renal Dnase1 Promotes Progression of Lupus Nephritis in Autoimmune (NZBxNZW)F1 Mice
BACKGROUND:Lupus nephritis is characterized by deposition of chromatin fragment-IgG complexes in the mesangial matrix and glomerular basement membranes (GBM). The latter defines end-stage disease. METHODOLOGY/PRINCIPALS: In the present study we determined the impact of antibodies to dsDNA, renal Dnase1 and matrix metalloprotease (MMP) mRNA levels and enzyme activities on early and late events in murine lupus nephritis. The major focus was to analyse if these factors were interrelated, and if changes in their expression explain basic processes accounting for lupus nephritis. FINDINGS:Early phases of nephritis were associated with chromatin-IgG complex deposition in the mesangial matrix. A striking observation was that this event correlated with appearance of anti-dsDNA antibodies and mild or clinically silent nephritis. These events preceded down-regulation of renal Dnase1. Later, renal Dnase1 mRNA level and enzyme activity were reduced, while MMP2 mRNA level and enzyme activity increased. Reduced levels of renal Dnase1 were associated in time with deficient fragmentation of chromatin from dead cells. Large fragments were retained and accumulated in GBM. Also, since chromatin fragments are prone to stimulate Toll-like receptors in e.g. dendritic cells, this may in fact explain increased expression of MMPs. SIGNIFICANCE:These scenarios may explain the basis for deposition of chromatin-IgG complexes in glomeruli in early and late stages of nephritis, loss of glomerular integrity and finally renal failure
The severity of pandemic H1N1 influenza in the United States, from April to July 2009: A Bayesian analysis
Background: Accurate measures of the severity of pandemic (H1N1) 2009 influenza (pH1N1) are needed to assess the likely impact of an anticipated resurgence in the autumn in the Northern Hemisphere. Severity has been difficult to measure because jurisdictions with large numbers of deaths and other severe outcomes have had too many cases to assess the total number with confidence. Also, detection of severe cases may be more likely, resulting in overestimation of the severity of an average case. We sought to estimate the probabilities that symptomatic infection would lead to hospitalization, ICU admission, and death by combining data from multiple sources. Methods and Findings: We used complementary data from two US cities: Milwaukee attempted to identify cases of medically attended infection whether or not they required hospitalization, while New York City focused on the identification of hospitalizations, intensive care admission or mechanical ventilation (hereafter, ICU), and deaths. New York data were used to estimate numerators for ICU and death, and two sources of data - medically attended cases in Milwaukee or self-reported influenza-like illness (ILI) in New York - were used to estimate ratios of symptomatic cases to hospitalizations. Combining these data with estimates of the fraction detected for each level of severity, we estimated the proportion of symptomatic patients who died (symptomatic case-fatality ratio, sCFR), required ICU (sCIR), and required hospitalization (sCHR), overall and by age category. Evidence, prior information, and associated uncertainty were analyzed in a Bayesian evidence synthesis framework. Using medically attended cases and estimates of the proportion of symptomatic cases medically attended, we estimated an sCFR of 0.048% (95% credible interval [CI] 0.026%-0.096%), sCIR of 0.239% (0.134%-0.458%), and sCHR of 1.44% (0.83%-2.64%). Using self-reported ILI, we obtained estimates approximately 7-96lower. sCFR and sCIR appear to be highest in persons aged 18 y and older, and lowest in children aged 5-17 y. sCHR appears to be lowest in persons aged 5-17; our data were too sparse to allow us to determine the group in which it was the highest. Conclusions: These estimates suggest that an autumn-winter pandemic wave of pH1N1 with comparable severity per case could lead to a number of deaths in the range from considerably below that associated with seasonal influenza to slightly higher, but with the greatest impact in children aged 0-4 and adults 18-64. These estimates of impact depend on assumptions about total incidence of infection and would be larger if incidence of symptomatic infection were higher or shifted toward adults, if viral virulence increased, or if suboptimal treatment resulted from stress on the health care system; numbers would decrease if the total proportion of the population symptomatically infected were lower than assumed.published_or_final_versio
ndvF, a novel locus located on megaplasmid pRmeSU47b (pEXO) of Rhizobium meliloti, is required for normal nodule development.
Rhizobium meliloti strains carrying either of two overlapping deletions (delta 5408 and delta F114) of the megaplasmid pRmeSU47b form nodules on alfalfa which fail to fix N2 (Fix-). Strains carrying these deletions also fail to fluoresce on media containing calcofluor, indicating a defect in synthesis of the acidic exopolysaccharide (Exo-) of R. meliloti. We have isolated cosmid clones (pTH21 and pTH22) which complement the Fix- but not the Exo- phenotype of the strains carrying the delta 5408 and delta F114 deletions. In addition, cosmid clones which complement the Exo- phenotype fail to complement the Fix- phenotype of these deletions; thus, the Exo- phenotype is not related to the Fix- phenotype. A 5-kb region within a 7.3-kb BamHI restriction fragment was found to be required for complementation of the Fix- phenotype of the delta 5408 and delta F114 deletion strains. Tn5 insertions in the 5-kb region generated a Fix- phenotype when recombined into the wild-type genome. We have designated this locus ndvF, for nodule development. TnphoA mutagenesis of this region generated active alkaline-phosphatase gene fusions, indicating that ndvF encodes extracytoplasmic protein(s). Induction of nodules by the ndvF mutants was delayed by 2 to 3 days compared with induction by the wild-type strain. Light microscopy of nodules elicited by strains carrying the large 150-kb delta F114 deletion, a 12-kb deletion removing ndvF, or an individual ndvF::Tn5 insertion mutation demonstrated that many nodules contained few infected cortical cells, indicating that nodule development was blocked early in the infection process, before the release of bacteria from the infection threads
Cross-reaction of anti-DNA autoantibodies with membrane proteins of human glomerular mesangial cells in sera from patients with lupus nephritis
Anti-DNA autoantibodies were thought to play a major role in the pathogenesis of lupus nephritis (LN). A recent study revealed that affinity-purified anti-DNA antibodies had a cross-reaction with human glomerular mesangial cells (HMC). However, whether the cross-reaction was antigen–antibody-mediated was unclear. The aim of the current study was to investigate the binding of anti-DNA antibodies to HMC membrane proteins and to characterize the target antigens. Affinity-purified IgG anti-DNA antibodies were purified by DNA-cellulose chromatography in sera from nine patients with biopsy-proven active lupus nephritis. In vitro cultured primary HMCs were disrupted by sonication and HMC membranes were obtained by differential centrifugation. The membranes of human umbilical vein endothelial cells (HUVEC), human proximal renal tubular epithelial cell line (HK2) and peripheral mononuclear cells (PMC) were obtained as controls. Binding of anti-DNA antibodies to the membrane proteins was investigated by Western blot analysis using soluble membrane proteins as antigens. Both HMC membrane and affinity-purified anti-DNA antibodies were treated with DNase I to exclude DNA bridging. All nine affinity-purified anti-DNA antibodies could blot the HMC membrane proteins, and there were at least three bands at 74 kDa, 63 kDa and 42 kDa that could be blotted. Among the nine IgG preparations, all nine (100%) could blot the 74 kDa band; eight (88·9%) could recognize 63 kDa and 42 kDa protein bands separately. After DNase treatment, the same bands could still be blotted by most affinity-purified anti-DNA antibodies. Affinity-purified anti-DNA antibodies could also blot similar bands on membrane proteins of other cells, but some bands were different. In conclusion, anti-DNA autoantibodies could cross-react directly with cell membrane proteins of human glomerular mesangial cells and might play an important role in the pathogenetic mechanism in lupus nephritis