2,197 research outputs found
Statistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit
Using five spacecraft in geosynchronous orbit, plasmaspheric drainage plumes are located in the dayside magnetosphere and the measured pitch angle anisotropies of radiation belt electrons are compared duskward and dawnward of the plumes. Two hundred twenty‐six plume crossings are analyzed. It is found that the radiation belt anisotropy is systematically greater dawnward of plumes (before the electrons cross the plumes) than it is duskward of plumes (after the electrons have crossed the plumes). This change in anisotropy is attributed to pitch angle scattering of the radiation belt electrons during their passage through the plumes. A test database in the absence of plumes finds no equivalent change in the radiation belt anisotropy. The amount of pitch angle scattering by the plume is quantified, scattering times are estimated, and effective pitch angle diffusion coefficients within the plume are estimated. The pitch angle diffusion coefficients obtained from the scattering measurements are of the same magnitude as expected values for electromagnetic ion cyclotron (EMIC) waves at high electron energies (1.5 MeV); however, expected EMIC diffusion coefficients do not extend to pitch angles of 90° and would have difficulties explaining the observed isotropization of electrons. The pitch angle diffusion coefficients obtained from the scattering measurements are of the same magnitude as expected values for whistler mode hiss at lower electron energies (150 keV). Outward radial transport of the radiation belt caused by the pitch angle scattering in the plume is discussed. Key Points Radiation belt pitch angle scattering within the drainage plume is strong The amount of scattering agrees with diffusion coefficients in the literature The pitch angle scattering leads to radial transport of the radiation beltPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106858/1/jgra50883.pd
Poisson-Boltzmann Theory of Charged Colloids: Limits of the Cell Model for Salty Suspensions
Thermodynamic properties of charge-stabilised colloidal suspensions are
commonly modeled by implementing the mean-field Poisson-Boltzmann (PB) theory
within a cell model. This approach models a bulk system by a single macroion,
together with counterions and salt ions, confined to a symmetrically shaped,
electroneutral cell. While easing solution of the nonlinear PB equation, the
cell model neglects microion-induced correlations between macroions, precluding
modeling of macroion ordering phenomena. An alternative approach, avoiding
artificial constraints of cell geometry, maps a macroion-microion mixture onto
a one-component model of pseudo-macroions governed by effective interactions.
In practice, effective-interaction models are usually based on linear screening
approximations, which can accurately describe nonlinear screening only by
incorporating an effective (renormalized) macroion charge. Combining charge
renormalization and linearized PB theories, in both the cell model and an
effective-interaction (cell-free) model, we compute osmotic pressures of highly
charged colloids and monovalent microions over a range of concentrations. By
comparing predictions with primitive model simulation data for salt-free
suspensions, and with predictions of nonlinear PB theory for salty suspensions,
we chart the limits of both the cell model and linear-screening approximations
in modeling bulk thermodynamic properties. Up to moderately strong
electrostatic couplings, the cell model proves accurate in predicting osmotic
pressures of deionized suspensions. With increasing salt concentration,
however, the relative contribution of macroion interactions grows, leading
predictions of the cell and effective-interaction models to deviate. No
evidence is found for a liquid-vapour phase instability driven by monovalent
microions. These results may guide applications of PB theory to soft materials.Comment: 27 pages, 5 figures, special issue of Journal of Physics: Condensed
Matter on "Classical density functional theory methods in soft and hard
matter
Stability of Colloidal Quasicrystals
Freezing of charge-stabilized colloidal suspensions and relative stabilities
of crystals and quasicrystals are studied using thermodynamic perturbation
theory. Macroion interactions are modelled by effective pair potentials
combining electrostatic repulsion with polymer-depletion or van der Waals
attraction. Comparing free energies -- counterion terms included -- for
elementary crystals and rational approximants to icosahedral quasicrystals,
parameters are identified for which one-component quasicrystals are stabilized
by a compromise between packing entropy and cohesive energy.Comment: 6 pages, 4 figure
A statistical comparison of hot-ion properties at geosynchronous orbit during intense and moderate geomagnetic storms at solar maximum and minimum.
Hot-ion measurements at geosynchronous orbit from the Los Alamos Magnetospheric Plasma Analyzer (MPA) instrument during geomagnetic storms at solar maximum (July 1999–June 2002) and at solar minimum (July 1994–June 1997) are collected, categorized, and analyzed through the superposed epoch technique. To investigate this source of the storm-time ring current, the local time (LT) and universal time (UT) dependence of the average variations of hot-ion fluxes (at the energies of ∼30, ∼17, ∼8, and ∼1 keV), density, temperature, entropy, and temperature anisotropy are examined and compared among four storm categories, i.e., 44 intense storms and 120 moderate storms, defined by the pressure corrected Dst (Dst*), at the two solar extrema. All the hot-ion parameters are highly disturbed around Dst*min; they show distinct peaks or minima and display obvious increase or decrease regions, whose locations do not change much with levels of geomagnetic activity and solar activity. It is also found that intense storms at solar minimum always have the highest (lowest) average peak value (minimum) in each hot-ion parameter. Around Dst*min in each storm category, hot ions are clearly denser near dawn than those near dusk. On the nightside and in the afternoon sector, temperature and entropy during solar minimum storms are usually higher than those during solar maximum storms; there is actually no clear temperature and entropy enhancement during solar maximum storms. During each type of storm, hot ions are isotropic on the nightside but anisotropic (T per /T par > 1) close to noon
Effective Interactions and Volume Energies in Charge-Stabilized Colloidal Suspensions
Charge-stabilized colloidal suspensions can be conveniently described by
formally reducing the macroion-microion mixture to an equivalent one-component
system of pseudo-particles. Within this scheme, the utility of a linear
response approximation for deriving effective interparticle interactions has
been demonstrated [M. J. Grimson and M. Silbert, Mol. Phys. 74, 397 (1991)].
Here the response approach is extended to suspensions of finite-sized macroions
and used to derive explicit expressions for (1) an effective electrostatic pair
interaction between pseudo-macroions and (2) an associated volume energy that
contributes to the total free energy. The derivation recovers precisely the
form of the DLVO screened-Coulomb effective pair interaction for spherical
macroions and makes manifest the important influence of the volume energy on
thermodynamic properties of deionized suspensions. Excluded volume corrections
are implicitly incorporated through a natural modification of the inverse
screening length. By including nonlinear response of counterions to macroions,
the theory may be generalized to systematically investigate effective many-body
interactions.Comment: 13 pages (J. Phys.: Condensed Matter, in press
Ionospheric response to the corotating interaction region-driven geomagnetic storm of October 2002
Unlike the geomagnetic storms produced by coronal mass ejections (CMEs), the storms generated by corotating interaction regions (CIRs) are not manifested by dramatic enhancements of the ring current. The CIR-driven storms are however capable of producing other phenomena typical for the magnetic storms such as relativistic particle acceleration, enhanced magnetospheric convection and ionospheric heating. This paper examines ionospheric plasma anomalies produced by a CIR-driven storm in the middle- and high-latitude ionosphere with a specific focus on the polar cap region. The moderate magnetic storm which took place on 14–17 October 2002 has been used as an example of the CIR-driven event. Four-dimensional tomographic reconstructions of the ionospheric plasma density using measurements of the total electron content along ray paths of GPS signals allow us to reveal the large-scale structure of storm-induced ionospheric anomalies. The tomographic reconstructions are compared with the data obtained by digital ionosonde located at Eureka station near the geomagnetic north pole. The morphology and dynamics of the observed ionospheric anomalies is compared qualitatively to the ionospheric anomalies produced by major CME-driven storms. It is demonstrated that the CIR-driven storm of October 2002 was able to produce ionospheric anomalies comparable to those produced by CME-driven storms of much greater Dst magnitude. This study represents an important step in linking the tomographic GPS reconstructions with the data from ground-based network of digital ionosondes
Density-Functional Theory of Quantum Freezing: Sensitivity to Liquid-State Structure and Statistics
Density-functional theory is applied to compute the ground-state energies of
quantum hard-sphere solids. The modified weighted-density approximation is used
to map both the Bose and the Fermi solid onto a corresponding uniform Bose
liquid, assuming negligible exchange for the Fermi solid. The required
liquid-state input data are obtained from a paired phonon analysis and the
Feynman approximation, connecting the static structure factor and the linear
response function. The Fermi liquid is treated by the Wu-Feenberg cluster
expansion, which approximately accounts for the effects of antisymmetry.
Liquid-solid transitions for both systems are obtained with no adjustment of
input data. Limited quantitative agreement with simulation indicates a need for
further improvement of the liquid-state input through practical alternatives to
the Feynman approximation.Comment: IOP-TeX, 21 pages + 7 figures, to appear, J. Phys.: Condens. Matte
Crowding of Polymer Coils and Demixing in Nanoparticle-Polymer Mixtures
The Asakura-Oosawa-Vrij (AOV) model of colloid-polymer mixtures idealizes
nonadsorbing polymers as effective spheres that are fixed in size and
impenetrable to hard particles. Real polymer coils, however, are intrinsically
polydisperse in size (radius of gyration) and may be penetrated by smaller
particles. Crowding by nanoparticles can affect the size distribution of
polymer coils, thereby modifying effective depletion interactions and
thermodynamic stability. To analyse the influence of crowding on polymer
conformations and demixing phase behaviour, we adapt the AOV model to mixtures
of nanoparticles and ideal, penetrable polymer coils that can vary in size. We
perform Gibbs ensemble Monte Carlo simulations, including trial
nanoparticle-polymer overlaps and variations in radius of gyration. Results are
compared with predictions of free-volume theory. Simulation and theory
consistently predict that ideal polymers are compressed by nanoparticles and
that compressibility and penetrability stabilise nanoparticle-polymer mixtures.Comment: 18 pages, 4 figure
Effective Interactions and Volume Energies in Charged Colloids: Linear Response Theory
Interparticle interactions in charge-stabilized colloidal suspensions, of
arbitrary salt concentration, are described at the level of effective
interactions in an equivalent one-component system. Integrating out from the
partition function the degrees of freedom of all microions, and assuming linear
response to the macroion charges, general expressions are obtained for both an
effective electrostatic pair interaction and an associated microion volume
energy. For macroions with hard-sphere cores, the effective interaction is of
the DLVO screened-Coulomb form, but with a modified screening constant that
incorporates excluded volume effects. The volume energy -- a natural
consequence of the one-component reduction -- contributes to the total free
energy and can significantly influence thermodynamic properties in the limit of
low-salt concentration. As illustrations, the osmotic pressure and bulk modulus
are computed and compared with recent experimental measurements for deionized
suspensions. For macroions of sufficient charge and concentration, it is shown
that the counterions can act to soften or destabilize colloidal crystals.Comment: 14 pages, including 3 figure
Study of EMIC wave excitation using direct ion measurements
With data from Van Allen Probes, we investigate electromagnetic ion cyclotron (EMIC) wave excitation using simultaneously observed ion distributions. Strong He band waves occurred while the spacecraft was moving through an enhanced density region. We extract from helium, oxygen, proton, and electron mass spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ∼2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He band waves but enhances the O band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one
- …