2,153 research outputs found

    Statistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit

    Full text link
    Using five spacecraft in geosynchronous orbit, plasmaspheric drainage plumes are located in the dayside magnetosphere and the measured pitch angle anisotropies of radiation belt electrons are compared duskward and dawnward of the plumes. Two hundred twenty‐six plume crossings are analyzed. It is found that the radiation belt anisotropy is systematically greater dawnward of plumes (before the electrons cross the plumes) than it is duskward of plumes (after the electrons have crossed the plumes). This change in anisotropy is attributed to pitch angle scattering of the radiation belt electrons during their passage through the plumes. A test database in the absence of plumes finds no equivalent change in the radiation belt anisotropy. The amount of pitch angle scattering by the plume is quantified, scattering times are estimated, and effective pitch angle diffusion coefficients within the plume are estimated. The pitch angle diffusion coefficients obtained from the scattering measurements are of the same magnitude as expected values for electromagnetic ion cyclotron (EMIC) waves at high electron energies (1.5 MeV); however, expected EMIC diffusion coefficients do not extend to pitch angles of 90° and would have difficulties explaining the observed isotropization of electrons. The pitch angle diffusion coefficients obtained from the scattering measurements are of the same magnitude as expected values for whistler mode hiss at lower electron energies (150 keV). Outward radial transport of the radiation belt caused by the pitch angle scattering in the plume is discussed. Key Points Radiation belt pitch angle scattering within the drainage plume is strong The amount of scattering agrees with diffusion coefficients in the literature The pitch angle scattering leads to radial transport of the radiation beltPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106858/1/jgra50883.pd

    Poisson-Boltzmann Theory of Charged Colloids: Limits of the Cell Model for Salty Suspensions

    Full text link
    Thermodynamic properties of charge-stabilised colloidal suspensions are commonly modeled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing solution of the nonlinear PB equation, the cell model neglects microion-induced correlations between macroions, precluding modeling of macroion ordering phenomena. An alternative approach, avoiding artificial constraints of cell geometry, maps a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interactions. In practice, effective-interaction models are usually based on linear screening approximations, which can accurately describe nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions of nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modeling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate in predicting osmotic pressures of deionized suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions grows, leading predictions of the cell and effective-interaction models to deviate. No evidence is found for a liquid-vapour phase instability driven by monovalent microions. These results may guide applications of PB theory to soft materials.Comment: 27 pages, 5 figures, special issue of Journal of Physics: Condensed Matter on "Classical density functional theory methods in soft and hard matter

    Stability of Colloidal Quasicrystals

    Full text link
    Freezing of charge-stabilized colloidal suspensions and relative stabilities of crystals and quasicrystals are studied using thermodynamic perturbation theory. Macroion interactions are modelled by effective pair potentials combining electrostatic repulsion with polymer-depletion or van der Waals attraction. Comparing free energies -- counterion terms included -- for elementary crystals and rational approximants to icosahedral quasicrystals, parameters are identified for which one-component quasicrystals are stabilized by a compromise between packing entropy and cohesive energy.Comment: 6 pages, 4 figure

    Effective Interactions and Volume Energies in Charge-Stabilized Colloidal Suspensions

    Full text link
    Charge-stabilized colloidal suspensions can be conveniently described by formally reducing the macroion-microion mixture to an equivalent one-component system of pseudo-particles. Within this scheme, the utility of a linear response approximation for deriving effective interparticle interactions has been demonstrated [M. J. Grimson and M. Silbert, Mol. Phys. 74, 397 (1991)]. Here the response approach is extended to suspensions of finite-sized macroions and used to derive explicit expressions for (1) an effective electrostatic pair interaction between pseudo-macroions and (2) an associated volume energy that contributes to the total free energy. The derivation recovers precisely the form of the DLVO screened-Coulomb effective pair interaction for spherical macroions and makes manifest the important influence of the volume energy on thermodynamic properties of deionized suspensions. Excluded volume corrections are implicitly incorporated through a natural modification of the inverse screening length. By including nonlinear response of counterions to macroions, the theory may be generalized to systematically investigate effective many-body interactions.Comment: 13 pages (J. Phys.: Condensed Matter, in press

    Ionospheric response to the corotating interaction region-driven geomagnetic storm of October 2002

    Get PDF
    Unlike the geomagnetic storms produced by coronal mass ejections (CMEs), the storms generated by corotating interaction regions (CIRs) are not manifested by dramatic enhancements of the ring current. The CIR-driven storms are however capable of producing other phenomena typical for the magnetic storms such as relativistic particle acceleration, enhanced magnetospheric convection and ionospheric heating. This paper examines ionospheric plasma anomalies produced by a CIR-driven storm in the middle- and high-latitude ionosphere with a specific focus on the polar cap region. The moderate magnetic storm which took place on 14–17 October 2002 has been used as an example of the CIR-driven event. Four-dimensional tomographic reconstructions of the ionospheric plasma density using measurements of the total electron content along ray paths of GPS signals allow us to reveal the large-scale structure of storm-induced ionospheric anomalies. The tomographic reconstructions are compared with the data obtained by digital ionosonde located at Eureka station near the geomagnetic north pole. The morphology and dynamics of the observed ionospheric anomalies is compared qualitatively to the ionospheric anomalies produced by major CME-driven storms. It is demonstrated that the CIR-driven storm of October 2002 was able to produce ionospheric anomalies comparable to those produced by CME-driven storms of much greater Dst magnitude. This study represents an important step in linking the tomographic GPS reconstructions with the data from ground-based network of digital ionosondes

    Density-Functional Theory of Quantum Freezing: Sensitivity to Liquid-State Structure and Statistics

    Full text link
    Density-functional theory is applied to compute the ground-state energies of quantum hard-sphere solids. The modified weighted-density approximation is used to map both the Bose and the Fermi solid onto a corresponding uniform Bose liquid, assuming negligible exchange for the Fermi solid. The required liquid-state input data are obtained from a paired phonon analysis and the Feynman approximation, connecting the static structure factor and the linear response function. The Fermi liquid is treated by the Wu-Feenberg cluster expansion, which approximately accounts for the effects of antisymmetry. Liquid-solid transitions for both systems are obtained with no adjustment of input data. Limited quantitative agreement with simulation indicates a need for further improvement of the liquid-state input through practical alternatives to the Feynman approximation.Comment: IOP-TeX, 21 pages + 7 figures, to appear, J. Phys.: Condens. Matte

    Effective Interactions and Volume Energies in Charged Colloids: Linear Response Theory

    Full text link
    Interparticle interactions in charge-stabilized colloidal suspensions, of arbitrary salt concentration, are described at the level of effective interactions in an equivalent one-component system. Integrating out from the partition function the degrees of freedom of all microions, and assuming linear response to the macroion charges, general expressions are obtained for both an effective electrostatic pair interaction and an associated microion volume energy. For macroions with hard-sphere cores, the effective interaction is of the DLVO screened-Coulomb form, but with a modified screening constant that incorporates excluded volume effects. The volume energy -- a natural consequence of the one-component reduction -- contributes to the total free energy and can significantly influence thermodynamic properties in the limit of low-salt concentration. As illustrations, the osmotic pressure and bulk modulus are computed and compared with recent experimental measurements for deionized suspensions. For macroions of sufficient charge and concentration, it is shown that the counterions can act to soften or destabilize colloidal crystals.Comment: 14 pages, including 3 figure

    Crowding of Polymer Coils and Demixing in Nanoparticle-Polymer Mixtures

    Full text link
    The Asakura-Oosawa-Vrij (AOV) model of colloid-polymer mixtures idealizes nonadsorbing polymers as effective spheres that are fixed in size and impenetrable to hard particles. Real polymer coils, however, are intrinsically polydisperse in size (radius of gyration) and may be penetrated by smaller particles. Crowding by nanoparticles can affect the size distribution of polymer coils, thereby modifying effective depletion interactions and thermodynamic stability. To analyse the influence of crowding on polymer conformations and demixing phase behaviour, we adapt the AOV model to mixtures of nanoparticles and ideal, penetrable polymer coils that can vary in size. We perform Gibbs ensemble Monte Carlo simulations, including trial nanoparticle-polymer overlaps and variations in radius of gyration. Results are compared with predictions of free-volume theory. Simulation and theory consistently predict that ideal polymers are compressed by nanoparticles and that compressibility and penetrability stabilise nanoparticle-polymer mixtures.Comment: 18 pages, 4 figure

    Study of EMIC wave excitation using direct ion measurements

    Get PDF
    With data from Van Allen Probes, we investigate electromagnetic ion cyclotron (EMIC) wave excitation using simultaneously observed ion distributions. Strong He band waves occurred while the spacecraft was moving through an enhanced density region. We extract from helium, oxygen, proton, and electron mass spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ∌2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He band waves but enhances the O band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one

    Nonergodicity transitions in colloidal suspensions with attractive interactions

    Full text link
    The colloidal gel and glass transitions are investigated using the idealized mode coupling theory (MCT) for model systems characterized by short-range attractive interactions. Results are presented for the adhesive hard sphere and hard core attractive Yukawa systems. According to MCT, the former system shows a critical glass transition concentration that increases significantly with introduction of a weak attraction. For the latter attractive Yukawa system, MCT predicts low temperature nonergodic states that extend to the critical and subcritical region. Several features of the MCT nonergodicity transition in this system agree qualitatively with experimental observations on the colloidal gel transition, suggesting that the gel transition is caused by a low temperature extension of the glass transition. The range of the attraction is shown to govern the way the glass transition line traverses the phase diagram relative to the critical point, analogous to findings for the fluid-solid freezing transition.Comment: 11 pages, 7 figures; to be published in Phys. Rev. E (1 May 1999
    • 

    corecore