3,313 research outputs found
Design of aircraft turbine fan drive gear transmission system
The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts
A Mid-Infrared Imaging Survey of Embedded Young Stellar Objects in the Rho Ophiuchi Cloud Core
Results of a comprehensive, new, ground-based mid-infrared imaging survey of
the young stellar population of the Rho Ophiuchi cloud are presented. Data were
acquired at the Palomar 5-m and at the Keck 10-m telescopes with the MIRLIN and
LWS instruments, at 0.25 arcsec and 0.25 arcsec resolutions, respectively. Of
172 survey objects, 85 were detected. Among the 22 multiple systems observed,
15 were resolved and their individual component fluxes determined. A plot of
the frequency distribution of the detected objects with SED spectral slope
shows that YSOs spend ~400,000 yr in the Flat Spectrum phase, clearing out
their remnant infall envelopes. Mid-infrared variability is found among a
significant fraction of the surveyed objects, and is found to occur for all SED
classes with optically thick disks. Large-amplitude near-infrared variability,
also found for all SED classes with optically thick disks, seems to occur with
somewhat higher frequency at the earlier evolutionary stages. Although a
general trend of mid-infrared excess and NIR veiling exists proceeding through
SED classes, with Class I objects generally exhibiting K-veilings > 1, Flat
Spectrum objects with K-veilings > 0.58, and Class III objects with K-veilings
=0, Class II objects exhibit the widest range of K-band veiling values, 0-4.5.
However, the highly variable value of veiling that a single source can exhibit
in any of the SED classes in which active disk accretion can take place is
striking, and is direct observational evidence for highly time-variable
accretion activity in disks. Finally, by comparing mid-infrared vs.
near-infrared excesses in a subsample with well-determined effective
temperatures and extinction values, disk clearing mechanisms are explored. The
results are consistent with disk clearing proceeding from the inside-out.Comment: 18 pages + 5 tables + 7 figure
Submillimetre dust polarisation and opacity in the HD163296 protoplanetary ring system
We present ALMA images of the sub-mm continuum polarisation and spectral
index of the protoplanetary ringed disk HD163296. The polarisation fraction at
870{\mu}m is measured to be ~0.9% in the central core and generally increases
with radius along the disk major axis. It peaks in the gaps between the dust
rings, and the largest value (~4%) is found between rings 1 and 2. The
polarisation vectors are aligned with the disk minor axis in the central core,
but become more azimuthal in the gaps, twisting by up to +/-9degrees in the gap
between rings 1 and 2. These general characteristics are consistent with a
model of self-scattered radiation in the ringed structure, without requiring an
additional dust alignment mechanism. The 870/1300{\mu}m dust spectral index
exhibits minima in the centre and the inner rings, suggesting these regions
have high optical depths. However, further refinement of the dust or the disk
model at higher resolution is needed to reproduce simultaneously the observed
degree of polarisation and the low spectral index.Comment: 5 pages +2 pages supplemental data. v2 - revised figures and final
values; conclusions unchange
Sub-millimeter images of a dusty Kuiper belt around eta Corvi
We present sub-millimeter and mid-infrared images of the circumstellar disk
around the nearby F2V star eta Corvi. The disk is resolved at 850um with a size
of ~100AU. At 450um the emission is found to be extended at all position
angles, with significant elongation along a position angle of 130+-10deg; at
the highest resolution (9.3") this emission is resolved into two peaks which
are to within the uncertainties offset symmetrically from the star at 100AU
projected separation. Modeling the appearance of emission from a narrow ring in
the sub-mm images shows the observed structure cannot be caused by an edge-on
or face-on axisymmetric ring; the observations are consistent with a ring of
radius 150+-20AU seen at 45+-25deg inclination. More face-on orientations are
possible if the dust distribution includes two clumps similar to Vega; we show
how such a clumpy structure could arise from the migration over 25Myr of a
Neptune mass planet from 80-105AU. The inner 100AU of the system appears
relatively empty of sub-mm emitting dust, indicating that this region may have
been cleared by the formation of planets, but the disk emission spectrum shows
that IRAS detected an additional hot component with a characteristic
temperature of 370+-60K (implying a distance of 1-2AU). At 11.9um we found the
emission to be unresolved with no background sources which could be
contaminating the fluxes measured by IRAS. The age of this star is estimated to
be ~1Gyr. It is very unusual for such an old main sequence star to exhibit
significant mid-IR emission. The proximity of this source makes it a perfect
candidate for further study from optical to mm wavelengths to determine the
distribution of its dust.Comment: 22 pages, 4 figures. Scheduled for publication in ApJ 10 February
2005 issu
Parallel distractor rejection as a binding mechanism in search
The relatively common experimental visual search task of finding a red X amongst red O’s and green X’s (conjunction search) presents the visual system with a binding problem. Illusory conjunctions (ICs) of features across objects must be avoided and only features present in the same object bound together. Correct binding into unique objects by the visual system may be promoted, and ICs minimized, by inhibiting the locations of distractors possessing non-target features (e.g., Treisman and Sato, 1990). Such parallel rejection of interfering distractors leaves the target as the only item competing for selection; thus solving the binding problem. In the present article we explore the theoretical and empirical basis of this process of active distractor inhibition in search. Specific experiments that provide strong evidence for a process of active distractor inhibition in search are highlighted. In the final part of the article we consider how distractor inhibition, as defined here, may be realized at a neurophysiological level (Treisman and Sato, 1990)
Parallel distractor rejection as a binding mechanism in search
The relatively common experimental visual search task of finding a red X amongst red O’s and green X’s (conjunction search) presents the visual system with a binding problem. Illusory conjunctions (ICs) of features across objects must be avoided and only features present in the same object bound together. Correct binding into unique objects by the visual system may be promoted, and ICs minimized, by inhibiting the locations of distractors possessing non-target features (e.g., Treisman and Sato, 1990). Such parallel rejection of interfering distractors leaves the target as the only item competing for selection; thus solving the binding problem. In the present article we explore the theoretical and empirical basis of this process of active distractor inhibition in search. Specific experiments that provide strong evidence for a process of active distractor inhibition in search are highlighted. In the final part of the article we consider how distractor inhibition, as defined here, may be realized at a neurophysiological level (Treisman and Sato, 1990)
Structure and effects of annealing in colloidal matrix-free Ge quantum dots
This research was supported by Queen Mary, University of London. We would like to thank Diamond synchrotron light source for the beamline (B18) and the corporation work. AK and OE acknowledge the Turkish Ministry of National Education. WL is grateful to the South East Physics Network (SEPnet). YZ was supported by Chinese Scholarship Council (CSC) for PhD study
Cosmological perturbations in f(T) gravity
We investigate the cosmological perturbations in f(T) gravity. Examining the
pure gravitational perturbations in the scalar sector using a diagonal
vierbien, we extract the corresponding dispersion relation, which provides a
constraint on the f(T) ansatzes that lead to a theory free of instabilities.
Additionally, upon inclusion of the matter perturbations, we derive the fully
perturbed equations of motion, and we study the growth of matter overdensities.
We show that f(T) gravity with f(T) constant coincides with General Relativity,
both at the background as well as at the first-order perturbation level.
Applying our formalism to the power-law model we find that on large subhorizon
scales (O(100 Mpc) or larger), the evolution of matter overdensity will differ
from LCDM cosmology. Finally, examining the linear perturbations of the vector
and tensor sectors, we find that (for the standard choice of vierbein) f(T)
gravity is free of massive gravitons.Comment: 11 pages, 4 figures. Analysis of the vector and tensor sectors adde
Dust in the 55 Cancri planetary system
The presence of debris disks around 1-Gyr-old main sequence stars
suggests that an appreciable amount of dust may persist even in mature
planetary systems. Here we report the detection of dust emission from 55
Cancri, a star with one, or possibly two, planetary companions detected through
radial velocity measurements. Our observations at 850m and 450m imply
a dust mass of 0.0008-0.005 Earth masses, somewhat higher than that in the the
Kuiper Belt of our solar system. The estimated temperature of the dust grains
and a simple model fit both indicate a central disk hole of at least 10 AU in
radius. Thus, the region where the planets are detected is likely to be
significantly depleted of dust. Our results suggest that far-infrared and
sub-millimeter observations are powerful tools for probing the outer regions of
extrasolar planetary systems.Comment: 8 pages and 2 figures, to appear in the Astrophysical Journa
Constraining the time variation of the coupling constants from cosmic microwave background: effect of \Lambda_{QCD}
We investigate constraints on the time variation of the fine structure
constant between the recombination epoch and the present epoch,
\Delta\alpha/\alpha \equiv (\alpha_{rec} - \alpha_{now})/\alpha_{now}, from
cosmic microwave background (CMB) taking into account simultaneous variation of
other physical constants, namely the electron mass m_{e} and the proton mass
m_{p}. In other words, we consider the variation of Yukawa coupling and the QCD
scale \Lambda_{QCD} in addition to the electromagnetic coupling. We clarify
which parameters can be determined from CMB temperature anisotropy in terms of
singular value decomposition. Assuming a relation among variations of coupling
constants governed by a single scalar field (the dilaton), the 95% confidence
level (C.L.) constraint on \Delta\alpha/\alpha is found to be -8.28 \times
10^{-3} < \Delta\alpha/\alpha < 1.81 \times 10^{-3}, which is tighter than the
one obtained by considering only the change of \alpha and m_{e}. We also obtain
the constraint on the time variation of the proton-to-electron mass ratio \mu
\equiv m_{p}/m_{e} to be -0.52 < \Delta\mu/\mu < 0.17 (95% C.L.) under the same
assumption. Finally, we also implement a forecast for constraints from the
PLANCK survey.Comment: 25 pages, 4 figures; references adde
- …