4,717 research outputs found

    Submillimetre dust polarisation and opacity in the HD163296 protoplanetary ring system

    Full text link
    We present ALMA images of the sub-mm continuum polarisation and spectral index of the protoplanetary ringed disk HD163296. The polarisation fraction at 870{\mu}m is measured to be ~0.9% in the central core and generally increases with radius along the disk major axis. It peaks in the gaps between the dust rings, and the largest value (~4%) is found between rings 1 and 2. The polarisation vectors are aligned with the disk minor axis in the central core, but become more azimuthal in the gaps, twisting by up to +/-9degrees in the gap between rings 1 and 2. These general characteristics are consistent with a model of self-scattered radiation in the ringed structure, without requiring an additional dust alignment mechanism. The 870/1300{\mu}m dust spectral index exhibits minima in the centre and the inner rings, suggesting these regions have high optical depths. However, further refinement of the dust or the disk model at higher resolution is needed to reproduce simultaneously the observed degree of polarisation and the low spectral index.Comment: 5 pages +2 pages supplemental data. v2 - revised figures and final values; conclusions unchange

    Investigation of the fundamental constants stability based on the reactor Oklo burn-up analysis

    Full text link
    The burn-up for SC56-1472 sample of the natural Oklo reactor zone 3 was calculated using the modern Monte Carlo codes. We reconstructed the neutron spectrum in the core by means of the isotope ratios: 147^{147}Sm/148^{148}Sm and 176^{176}Lu/175^{175}Lu. These ratios unambiguously determine the spectrum index and core temperature. The effective neutron absorption cross section of 149^{149}Sm calculated using this spectrum was compared with experimental one. The disagreement between these two values allows to limit a possible shift of the low laying resonance of 149^{149}Sm even more . Then, these limits were converted to the limits for the change of the fine structure constant α\alpha. We found that for the rate of α\alpha change the inequality âˆŁÎŽÎ±Ë™/Î±âˆŁâ‰€5⋅10−18|\delta \dot{\alpha}/\alpha| \le 5\cdot 10^{-18} is fulfilled, which is of the next higher order than our previous limit.Comment: 16 pages, 7 figure

    Gravitational Stirring in Planetary Debris Disks

    Get PDF
    We describe gravitational stirring models of planetary debris disks using a new multi-annulus planetesimal evolution code. The current code includes gravitational stirring and dynamical friction; future studies will include coagulation, fragmentation, Poynting-Robertson drag, and other physical processes. We use the results of our calculations to investigate the physical conditions required for small bodies in a planetesimal disk to reach the shattering velocity and begin a collisional cascade. Our results demonstrate that disks composed primarily of bodies with a single size will not undergo a collisional cascade which produces small dust grains at 30-150 AU on timescales of 1 Gyr or smaller. Disks with a size distribution of bodies reach conditions necessary for a collisional cascade in 10 Myr to 1 Gyr if the disk is at least as massive as a minimum mass solar nebula and if the disk contains objects with radii of 500 km or larger. The estimated 500 Myr survival time for these disks is close to the median age of roughly 400 Myr derived for nearby stars with dusty disks.Comment: 23 pages of text + 16 Figures; to appear in the Astronomical Journal, January 200

    Sub-millimeter images of a dusty Kuiper belt around eta Corvi

    Full text link
    We present sub-millimeter and mid-infrared images of the circumstellar disk around the nearby F2V star eta Corvi. The disk is resolved at 850um with a size of ~100AU. At 450um the emission is found to be extended at all position angles, with significant elongation along a position angle of 130+-10deg; at the highest resolution (9.3") this emission is resolved into two peaks which are to within the uncertainties offset symmetrically from the star at 100AU projected separation. Modeling the appearance of emission from a narrow ring in the sub-mm images shows the observed structure cannot be caused by an edge-on or face-on axisymmetric ring; the observations are consistent with a ring of radius 150+-20AU seen at 45+-25deg inclination. More face-on orientations are possible if the dust distribution includes two clumps similar to Vega; we show how such a clumpy structure could arise from the migration over 25Myr of a Neptune mass planet from 80-105AU. The inner 100AU of the system appears relatively empty of sub-mm emitting dust, indicating that this region may have been cleared by the formation of planets, but the disk emission spectrum shows that IRAS detected an additional hot component with a characteristic temperature of 370+-60K (implying a distance of 1-2AU). At 11.9um we found the emission to be unresolved with no background sources which could be contaminating the fluxes measured by IRAS. The age of this star is estimated to be ~1Gyr. It is very unusual for such an old main sequence star to exhibit significant mid-IR emission. The proximity of this source makes it a perfect candidate for further study from optical to mm wavelengths to determine the distribution of its dust.Comment: 22 pages, 4 figures. Scheduled for publication in ApJ 10 February 2005 issu

    Herschel PACS Observations and Modeling of Debris Disks in the Tucana-Horologium Association

    Full text link
    We present Herschel PACS photometry of seventeen B- to M-type stars in the 30 Myr-old Tucana-Horologium Association. This work is part of the Herschel Open Time Key Programme "Gas in Protoplanetary Systems" (GASPS). Six of the seventeen targets were found to have infrared excesses significantly greater than the expected stellar IR fluxes, including a previously unknown disk around HD30051. These six debris disks were fitted with single-temperature blackbody models to estimate the temperatures and abundances of the dust in the systems. For the five stars that show excess emission in the Herschel PACS photometry and also have Spitzer IRS spectra, we fit the data with models of optically thin debris disks with realistic grain properties in order to better estimate the disk parameters. The model is determined by a set of six parameters: surface density index, grain size distribution index, minimum and maximum grain sizes, and the inner and outer radii of the disk. The best fitting parameters give us constraints on the geometry of the dust in these systems, as well as lower limits to the total dust masses. The HD105 disk was further constrained by fitting marginally resolved PACS 70 micron imaging.Comment: 15 pages, 7 figures, Accepted to Ap

    Cosmological perturbations in f(T) gravity

    Full text link
    We investigate the cosmological perturbations in f(T) gravity. Examining the pure gravitational perturbations in the scalar sector using a diagonal vierbien, we extract the corresponding dispersion relation, which provides a constraint on the f(T) ansatzes that lead to a theory free of instabilities. Additionally, upon inclusion of the matter perturbations, we derive the fully perturbed equations of motion, and we study the growth of matter overdensities. We show that f(T) gravity with f(T) constant coincides with General Relativity, both at the background as well as at the first-order perturbation level. Applying our formalism to the power-law model we find that on large subhorizon scales (O(100 Mpc) or larger), the evolution of matter overdensity will differ from LCDM cosmology. Finally, examining the linear perturbations of the vector and tensor sectors, we find that (for the standard choice of vierbein) f(T) gravity is free of massive gravitons.Comment: 11 pages, 4 figures. Analysis of the vector and tensor sectors adde

    Big bang nucleosynthesis as a probe of fundamental "constants"

    Full text link
    Big Bang nucleosynthesis (BBN) is the earliest sensitive probe of the values of many fundamental particle physics parameters. We have found the leading linear dependences of primordial abundances on all relevant parameters of the standard BBN code, including binding energies and nuclear reaction rates. This enables us to set limits on possible variations of fundamental parameters. We find that 7Li is expected to be significantly more sensitive than other species to many fundamental parameters, a result which also holds for variations of coupling strengths in grand unified (GUT) models. Our work also indicates which areas of nuclear theory need further development if the values of ``constants'' are to be more accurately probed.Comment: Refereed article to be published in Nuclear Physics in Astrophysics III Proceedings, J. Phys. G. Special Issue. Based on work in collaboration with C. Wetterich (Heidelberg). 6 page

    Processing and electromechanical properties of lanthanum-doped Pb(Zr,Ti)O3 extruded piezoelectric fibres

    Get PDF
    This article describes the processing and characterisation of lanthanum-doped lead zirconate titanate (PLZT)-based ferroelectric fibres for composite transducer applications. X-ray diffraction of the extruded and sintered fibres indicated some lead loss during sintering; however, the fibres exhibited low porosity (1.54%), high maximum piezoelectric strain (4041ppm) and relatively low coercive field (0.77kV/mm). The low coercive field of the lanthanum-doped fibres may be advantageous in terms of facilitating polarization of the fibres in composite architecture
    • 

    corecore