119 research outputs found
Disruption of the inositol phosphorylceramide synthase gene affects Trypanosoma cruzi differentiation and infection capacity
Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available. IPC synthase (IPCS) has been considered an ideal target enzyme for drug development because phosphoinositol-containing SL is absent in mammalian cells and the enzyme activity has been described in all parasite forms of T. cruzi. Furthermore, IPCS is an integral membrane protein conserved amongst other kinetoplastids, including Leishmania major, for which specific inhibitors have been identified. Using a CRISPR-Cas9 protocol, we generated T. cruzi knockout (KO) mutants in which both alleles of the IPCS gene were disrupted. We demonstrated that the lack of IPCS activity does not affect epimastigote proliferation or its susceptibility to compounds that have been identified as inhibitors of the L. major IPCS. However, disruption of the T. cruzi IPCS gene negatively affected epimastigote differentiation into metacyclic trypomastigotes as well as proliferation of intracellular amastigotes and differentiation of amastigotes into tissue culture-derived trypomastigotes. In accordance with previous studies suggesting that IPC is a membrane component essential for parasite survival in the mammalian host, we showed that T. cruzi IPCS null mutants are unable to establish an infection in vivo, even in immune deficient mice
SARS-CoV-2 infection and COVID-19 vaccination rates in pregnant women in Scotland
Population-level data on COVID-19 vaccine uptake in pregnancy and SARS-CoV-2 infection outcomes are lacking. We describe COVID-19 vaccine uptake and SARS-CoV-2 infection in pregnant women in Scotland, using whole-population data from a national, prospective cohort. Between the start of a COVID-19 vaccine program in Scotland, on 8 December 2020 and 31 October 2021, 25,917 COVID-19 vaccinations were given to 18,457 pregnant women. Vaccine coverage was substantially lower in pregnant women than in the general female population of 18-44 years; 32.3% of women giving birth in October 2021 had two doses of vaccine compared to 77.4% in all women. The extended perinatal mortality rate for women who gave birth within 28 d of a COVID-19 diagnosis was 22.6 per 1,000 births (95% CI 12.9-38.5; pandemic background rate 5.6 per 1,000 births; 452 out of 80,456; 95% CI 5.1-6.2). Overall, 77.4% (3,833 out of 4,950; 95% CI 76.2-78.6) of SARS-CoV-2 infections, 90.9% (748 out of 823; 95% CI 88.7-92.7) of SARS-CoV-2 associated with hospital admission and 98% (102 out of 104; 95% CI 92.5-99.7) of SARS-CoV-2 associated with critical care admission, as well as all baby deaths, occurred in pregnant women who were unvaccinated at the time of COVID-19 diagnosis. Addressing low vaccine uptake rates in pregnant women is imperative to protect the health of women and babies in the ongoing pandemic. [Abstract copyright: © 2022. The Author(s).
Confirmed SARS-CoV-2 infection in Scottish neonates 2020-2022:a national, population-based cohort study
Objectives: To examine neonates in Scotland aged 0–27 days with SARS-CoV-2 infection confirmed by viral testing; the risk of confirmed neonatal infection by maternal and infant characteristics; and hospital admissions associated with confirmed neonatal infections. Design: Population-based cohort study. Setting and population: All live births in Scotland, 1 March 2020–31 January 2022. Results: There were 141 neonates with confirmed SARS-CoV-2 infection over the study period, giving an overall infection rate of 153 per 100 000 live births (141/92 009, 0.15%). Among infants born to women with confirmed infection around the time of birth, the confirmed neonatal infection rate was 1812 per 100 000 live births (15/828, 1.8%). Two-thirds (92/141, 65.2%) of neonates with confirmed infection had an associated admission to neonatal or (more commonly) paediatric care. Six of these babies (6/92, 6.5%) were admitted to neonatal and/or paediatric intensive care; however, none of these six had COVID-19 recorded as their main diagnosis. There were no neonatal deaths among babies with confirmed infection. Implications and relevance: Confirmed neonatal SARS-CoV-2 infection was uncommon over the first 23 months of the pandemic in Scotland. Secular trends in the neonatal confirmed infection rate broadly followed those seen in the general population, although at a lower level. Maternal confirmed infection at birth was associated with an increased risk of neonatal confirmed infection. Two-thirds of neonates with confirmed infection had an associated admission to hospital, with resulting implications for the baby, family and services, although their outcomes were generally good. Ascertainment of confirmed infection depends on the extent of testing, and this is likely to have varied over time and between groups: the extent of unconfirmed infection is inevitably unknown
A population-based matched cohort study of major congenital anomalies following COVID-19 vaccination and SARS-CoV-2 infection
Evidence on associations between COVID-19 vaccination or SARS-CoV-2 infection and the risk of congenital anomalies is limited. Here we report a national, population-based, matched cohort study using linked electronic health records from Scotland (May 2020-April 2022) to estimate the association between COVID-19 vaccination and, separately, SARS-CoV-2 infection between six weeks pre-conception and 19 weeks and six days gestation and the risk of [1] any major congenital anomaly and [2] any non-genetic major congenital anomaly. Mothers vaccinated in this pregnancy exposure period mostly received an mRNA vaccine (73.7% Pfizer-BioNTech BNT162b2 and 7.9% Moderna mRNA-1273). Of the 6731 babies whose mothers were vaccinated in the pregnancy exposure period, 153 had any anomaly and 120 had a non-genetic anomaly. Primary analyses find no association between any vaccination and any anomaly (adjusted Odds Ratio [aOR] = 1.01, 95% Confidence Interval [CI] = 0.83-1.24) or non-genetic anomalies (aOR = 1.00, 95% CI = 0.81-1.22). Primary analyses also find no association between SARS-CoV-2 infection and any anomaly (aOR = 1.02, 95% CI = 0.66-1.60) or non-genetic anomalies (aOR = 0.94, 95% CI = 0.57-1.54). Findings are robust to sensitivity analyses. These data provide reassurance on the safety of vaccination, in particular mRNA vaccines, just before or in early pregnancy
A population-based matched cohort study of early pregnancy outcomes following COVID-19 vaccination and SARS-CoV-2 infection
Our thanks to the EAVE II Patient Advisory Group and Sands charity for their support. COPS is a sub-study of EAVE II, which is funded by the Medical Research Council (MR/R008345/1) with the support of BREATHE—The Health Data Research Hub for Respiratory Health [MC_PC_19004], which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. Additional support has been provided through Public Health Scotland and Scottish Government DG Health and Social Care and the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation. COPS has received additional funding from Tommy’s charity. S.J.S. is funded by a Wellcome Trust Clinical Career Development Fellowship (209560/Z/17/Z). S.V.K. acknowledges funding from an NRS Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2) and the Scottish Government Chief Scientist Office (SPHSU17). K.B. is funded by a Wellcome Senior Research Fellowship (220283/Z/20/Z).Peer reviewedPublisher PD
Neonatal and maternal outcomes following SARS-CoV-2 infection and COVID-19 vaccination : a population-based matched cohort study
Understanding the impact of SARS-CoV-2 infection and COVID-19 vaccination in pregnancy on neonatal and maternal outcomes informs clinical decision-making. Here we report a national, population-based, matched cohort study to investigate associations between SARS-CoV-2 infection and, separately, COVID-19 vaccination just before or during pregnancy and the risk of adverse neonatal and maternal outcomes among women in Scotland with a singleton pregnancy ending at ≥20 weeks gestation. Neonatal outcomes are stillbirth, neonatal death, extended perinatal mortality, preterm birth (overall, spontaneous, and provider-initiated), small-for-gestational age, and low Apgar score. Maternal outcomes are admission to critical care or death, venous thromboembolism, hypertensive disorders of pregnancy, and pregnancy-related bleeding. We use conditional logistic regression to derive odds ratios adjusted for socio-demographic and clinical characteristics (aORs). We find that infection is associated with an increased risk of preterm (aOR=1.36, 95% Confidence Interval [CI] = 1.16–1.59) and very preterm birth (aOR = 1.90, 95% CI 1.20–3.02), maternal admission to critical care or death (aOR=1.72, 95% CI = 1.39–2.12), and venous thromboembolism (aOR = 2.53, 95% CI = 1.47–4.35). We find no evidence of increased risk for any of our outcomes following vaccination. These data suggest SARS-CoV-2 infection during pregnancy is associated with adverse neonatal and maternal outcomes, and COVID-19 vaccination remains a safe way for pregnant women to protect themselves and their babies against infection
ATG5 is essential for ATG8-dependent autophagy and mitochondrial homeostasis in Leishmania major
Macroautophagy has been shown to be important for the cellular remodelling required for Leishmania differentiation. We now demonstrate that L. major contains a functional ATG12-ATG5 conjugation system, which is required for ATG8-dependent autophagosome formation. Nascent autophagosomes were found commonly associated with the mitochondrion. L. major mutants lacking ATG5 (Δatg5) were viable as promastigotes but were unable to form autophagosomes, had morphological abnormalities including a much reduced flagellum, were less able to differentiate and had greatly reduced virulence to macrophages and mice. Analyses of the lipid metabolome of Δatg5 revealed marked elevation of phosphatidylethanolamines (PE) in comparison to wild type parasites. The Δatg5 mutants also had increased mitochondrial mass but reduced mitochondrial membrane potential and higher levels of reactive oxygen species. These findings indicate that the lack of ATG5 and autophagy leads to perturbation of the phospholipid balance in the mitochondrion, possibly through ablation of membrane use and conjugation of mitochondrial PE to ATG8 for autophagosome biogenesis, resulting in a dysfunctional mitochondrion with impaired oxidative ability and energy generation. The overall result of this is reduced virulence
SARS-CoV-2 infection and COVID-19 vaccination rates in pregnant women in Scotland.
Population-level data on COVID-19 vaccine uptake in pregnancy and SARS-CoV-2 infection outcomes are lacking. We describe COVID-19 vaccine uptake and SARS-CoV-2 infection in pregnant women in Scotland, using whole-population data from a national, prospective cohort. Between the start of a COVID-19 vaccine program in Scotland, on 8 December 2020 and 31 October 2021, 25,917 COVID-19 vaccinations were given to 18,457 pregnant women. Vaccine coverage was substantially lower in pregnant women than in the general female population of 18-44 years; 32.3% of women giving birth in October 2021 had two doses of vaccine compared to 77.4% in all women. The extended perinatal mortality rate for women who gave birth within 28 d of a COVID-19 diagnosis was 22.6 per 1,000 births (95% CI 12.9-38.5; pandemic background rate 5.6 per 1,000 births; 452 out of 80,456; 95% CI 5.1-6.2). Overall, 77.4% (3,833 out of 4,950; 95% CI 76.2-78.6) of SARS-CoV-2 infections, 90.9% (748 out of 823; 95% CI 88.7-92.7) of SARS-CoV-2 associated with hospital admission and 98% (102 out of 104; 95% CI 92.5-99.7) of SARS-CoV-2 associated with critical care admission, as well as all baby deaths, occurred in pregnant women who were unvaccinated at the time of COVID-19 diagnosis. Addressing low vaccine uptake rates in pregnant women is imperative to protect the health of women and babies in the ongoing pandemic
Pregnancy outcomes following SARS-CoV-2 infection in Delta and Omicron dominant periods in Scotland: a population-based cohort study
Background:
Evidence suggests that the SARS-CoV-2 omicron (B.1·1.529) is associated with lower risks of adverse outcomes than the delta (B.1.617.2) variant among the general population. However, little is known about outcomes after omicron infection in pregnancy. We aimed to assess and compare short-term pregnancy outcomes after SARS-CoV-2 delta and omicron infection in pregnancy.
Methods:
We did a national population-based cohort study of women who had SARS-CoV-2 infection in pregnancy between May 17, 2021, and Jan 31, 2022. The primary maternal outcome was admission to critical care within 21 days of infection or death within 28 days of date of infection. Pregnancy outcomes were preterm birth and stillbirth within 28 days of infection. Neonatal outcomes were death within 28 days of birth, and low Apgar score (<7 of 10, for babies born at term) or neonatal SARS-CoV-2 infection in births occurring within 28 days of maternal infection. We used periods when variants were dominant in the general Scottish population, based on 50% or more of cases being S-gene positive (delta variant, from May 17 to Dec 14, 2021) or S-gene negative (omicron variant, from Dec 15, 2021, to Jan 31, 2022) as surrogates for variant infections. Analyses used logistic regression, adjusting for maternal age, deprivation quintile, ethnicity, weeks of gestation, and vaccination status. Sensitivity analyses included restricting the analysis to those with first confirmed SARS-CoV-2 infection and using periods when delta or omicron had 90% or more predominance.
Findings:
Between May 17, 2021, and Jan 31, 2022, there were 9923 SARS-CoV-2 infections in 9823 pregnancies, in 9817 women in Scotland. Compared with infections in the delta-dominant period, SARS-CoV-2 infections in pregnancy in the omicron-dominant period were associated with lower maternal critical care admission risk (0·3% [13 of 4968] vs 1·8% [89 of 4955]; adjusted odds ratio 0·25, 95% CI 0·14–0·44) and lower preterm birth within 28 days of infection (1·8% [37 of 2048] vs 4·2% [98 of 2338]; 0·57, 95% CI 0·38–0·87). There were no maternal deaths within 28 days of infection. Estimates of low Apgar scores were imprecise due to low numbers (5 [1·2%] of 423 with omicron vs 11 [2·1%] of 528 with delta, adjusted odds ratio 0·72, 0·23–2·32). There were fewer stillbirths in the omicron-dominant period than in the delta-dominant period (4·3 [2 of 462] per 1000 births vs 20·3 [13 of 639] per 1000) and no neonatal deaths during the omicron-dominant period (0 [0 of 460] per 1000 births vs 6·3 [4 of 626] per 1000 births), thus numbers were too small to support adjusted analyses. Rates of neonatal infection were low in births within 28 days of maternal SARS-CoV-2 infection, with 11 cases of neonatal SARS-CoV-2 in the delta-dominant period, and 1 case in the omicron-dominant period. Of the 15 stillbirths, 12 occurred in women who had not received two or more doses of COVID-19 vaccination at the time of SARS-CoV-2 infection in pregnancy. All 12 cases of neonatal SARS-CoV-2 infection occurred in women who had not received two or more doses of vaccine at the time of maternal infection. Findings in sensitivity analyses were similar to those in the main analyses.
Interpretation:
Pregnant women infected with SARS-CoV-2 were substantially less likely to have a preterm birth or maternal critical care admission during the omicron-dominant period than during the delta-dominant period.
Funding:
Wellcome Trust, Tommy's charity, Medical Research Council, UK Research and Innovation, Health Data Research UK, National Core Studies—Data and Connectivity, Public Health Scotland, Scottish Government Health and Social Care, Scottish Government Chief Scientist Office, National Research Scotland
A population-based matched cohort study of major congenital anomalies following COVID-19 vaccination and SARS-CoV-2 infection.
Evidence on associations between COVID-19 vaccination or SARS-CoV-2 infection and the risk of congenital anomalies is limited. Here we report a national, population-based, matched cohort study using linked electronic health records from Scotland (May 2020-April 2022) to estimate the association between COVID-19 vaccination and, separately, SARS-CoV-2 infection between six weeks pre-conception and 19 weeks and six days gestation and the risk of [1] any major congenital anomaly and [2] any non-genetic major congenital anomaly. Mothers vaccinated in this pregnancy exposure period mostly received an mRNA vaccine (73.7% Pfizer-BioNTech BNT162b2 and 7.9% Moderna mRNA-1273). Of the 6731 babies whose mothers were vaccinated in the pregnancy exposure period, 153 had any anomaly and 120 had a non-genetic anomaly. Primary analyses find no association between any vaccination and any anomaly (adjusted Odds Ratio [aOR] = 1.01, 95% Confidence Interval [CI] = 0.83-1.24) or non-genetic anomalies (aOR = 1.00, 95% CI = 0.81-1.22). Primary analyses also find no association between SARS-CoV-2 infection and any anomaly (aOR = 1.02, 95% CI = 0.66-1.60) or non-genetic anomalies (aOR = 0.94, 95% CI = 0.57-1.54). Findings are robust to sensitivity analyses. These data provide reassurance on the safety of vaccination, in particular mRNA vaccines, just before or in early pregnancy
- …