2,477 research outputs found

    Special Pyrheliometer Shroud Development

    Get PDF
    To insure that the insolation values accurately represent the input power to a power conversion unit the field of view (FOV) of the concentrator aperture and the insolation radiometer must be the same. The calculations, implementation, and results of this approach are covered. Three instruments were used to measure the insolation: an Eppley Normal Incidence Radiometer (NIP) and two versions of the kendall cavity radiometer. The shrouds used to limit the FOV of the radiometers were designed to simulate the FOV of the PDC-1 concentrater with the cold water cavity calorimeter. This technique of matching the FOV of an insolation radiometer to the FOV of a specific concentrater and receiver aperture appears to be both practical and effective. The efficiency of a power conversion unit will be too low if the insolation is measured with a radiometer which has a FOV which is larger than the FOV of the concentrator

    Memory systems for signal generating photoelectric image detectors

    Get PDF
    Digital systems are discussed which have the capacity to handle the large amounts of information contained in a typical image. It was used with a high gain pulse counting television camera tube, with a silicon target image detector and an analog to digital converter between the detector and the memory

    Parabolic Dish Concentrator (PDC-1)

    Get PDF
    The design, construction, and installation of the Parabolic Dish Concentrator, Type 1 (PDC-1) has been one of the most significant JPL concentrator projects because of the knowledge gained about this type of concentrator and the development of design, testing, and analysis procedures which are applicable to all solar concentrator projects. The need for these procedures was more clearly understood during the testing period which started with the prototype panel evaluation and ended with the performance characterization of the completed concentrator. For each phase of the test program, practical test procedures were required and these procedures defined the mathematical analysis which was essential for successful concentrator development. The concentrator performance appears to be limited only by the distortions resulting from thermal gradients through the reflecting panels. Simple optical testing can be extremely effective, but comprehensive mechanical and optical analysis is essential for cost effective solar concentrator development

    Development and testing of Parabolic Dish Concentrator No. 1

    Get PDF
    Parabolic Dish Concentrator No. 1 (PDC-1) is a 12-m-diameter prototype concentrator with low life-cycle costs for use with thermal-to-electric energy conversion devices. The concentrator assembly features panels made of a resin transfer molded balsa core/fiberglass sandwich with plastic reflective film as the reflective surface and a ribbed framework to hold the panels in place. The concentrator assembly tracks in azimuth and elevation on a base frame riding on a circular track. It is shown that the panels do not exhibit the proper parabolic contour. However, thermal gradients were discovered in the panels with daily temperature changes. The PDC-1 has sufficient optical quality to operate satisfactorily in a dish-electric system. The PDC-1 development provides the impetus for creating innovative optical testing methods and valuable information for use in designing and fabricating concentrators of future dish-electric systems

    View-limiting shrouds for insolation radiometers

    Get PDF
    Insolation radiometers (normal incidence pyrheliometers) are used to measure the solar radiation incident on solar concentrators for calibrating thermal power generation measurements. The measured insolation value is dependent on the atmospheric transparency, solar elevation angle, circumsolar radiation, and radiometer field of view. The radiant energy entering the thermal receiver is dependent on the same factors. The insolation value and the receiver input will be proportional if the concentrator and the radiometer have similar fields of view. This report describes one practical method for matching the field of view of a radiometer to that of a solar concentrator. The concentrator field of view can be calculated by optical ray tracing methods and the field of view of a radiometer with a simple shroud can be calculated by using geometric equations. The parameters for the shroud can be adjusted to provide an acceptable match between the respective fields of view. Concentrator fields of view have been calculated for a family of paraboloidal concentrators and receiver apertures. The corresponding shroud parameters have also been determined

    Alien Registration- Dennison, Charles E. (Bangor, Penobscot County)

    Get PDF
    https://digitalmaine.com/alien_docs/14105/thumbnail.jp

    The Potential Constants of Ethane

    Full text link
    The infrared and Raman data of light and heavy ethane (C2H6 and C2D6) have been reexamined for the purpose of determining as accurately as possible the potential constants of the ethane molecule. In order to fill in some of the gaps in the spectroscopic data, additional high resolution measurements have been made on the infrared spectrum of heavy ethane which have given more precise values for the active fundamental frequencies and zeta‐values. Resolution of the fine structure associated with the parallel band ν5* has given the value of the large moment of inertia of C2D6, thus completing the information required for the spectroscopic determination of the dimensions of ethane. The data yield, C☒C distance=1.543A, C☒H distance=1.102A, H☒C☒C angle=109°37′, and H☒C☒H angle=109°19′. The twenty‐two distinct potential constants compatible with the D3d symmetry of ethane have been determined through their relationships to the normal frequencies and zeta‐values of C2H6 and C2D6. The normal frequencies have been obtained by addition of anharmonic corrections to the spectroscopically observed fundamental frequencies. These corrections were estimated by means of the known anharmonic corrections for methane and the conditions imposed by the Teller product rule. The fundamental frequencies and zeta‐values have been taken directly from the observed band centers and rotational spacings wherever possible. In the cases of resonance, the influence of the couplings were either calculated or estimated and the corresponding unperturbed values for the frequencies and zeta‐values selected. The potential function is determined first in terms of a set of simple symmetry coordinates, and then reexpressed in terms of valence coordinates to permit comparison of the valence force constants of ethane and methane.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70194/2/JCPSA6-20-2-313-1.pd

    Critical behaviour in the nonlinear elastic response of hydrogels

    Full text link
    In this paper we study the elastic response of synthetic hydrogels to an applied shear stress. The hydrogels studied here have previously been shown to mimic the behaviour of biopolymer networks when they are sufficiently far above the gel point. We show that near the gel point they exhibit an elastic response that is consistent with the predicted critical behaviour of networks near or below the isostatic point of marginal stability. This point separates rigid and floppy states, distinguished by the presence or absence of finite linear elastic moduli. Recent theoretical work has also focused on the response of such networks to finite or large deformations, both near and below the isostatic point. Despite this interest, experimental evidence for the existence of criticality in such networks has been lacking. Using computer simulations, we identify critical signatures in the mechanical response of sub-isostatic networks as a function of applied shear stress. We also present experimental evidence consistent with these predictions. Furthermore, our results show the existence of two distinct critical regimes, one of which arises from the nonlinear stretch response of semi-flexible polymers.

    Evolution of secondary electron emission characteristics of spacecraft surfaces: Importance to spacecraft charging

    Get PDF
    Secondary electron emission (SEE) plays a key role in spacecraft charging [Garrett, 1981; Frooninckx and Sojka, 1992] . As a result, spacecraft charging codes require knowledge of the SEE characteristics of various materials in order to predict vehicle potentials in various orbital environments [Katz, et. al., 1986]. Because SEE is a surface phenomenon, occurring in the first few atomic layers of a material, the SEE characteristics of a given surface are extremely sensitive to changes in surface condition—e.g., the addition or removal of surface contaminants, or changes in surface morphology. That spacecraft surfaces can and generally do undergo significant evolution during their operational lifetimes is a fact well established by NASA\u27s Long Duration Exposure Facility (LDEF) [Crutcher, et al., 1991a]. Deposition and removal of contaminants can occur as a result of preferential adsorption of gases on cooler surfaces, the collection of ionized gases on negatively charged surfaces, atomic-oxygen-induced oxidation, photodissociation under vacuum uv bombardment, and ion-induced desorption. Since SEE is material-dependent phenomenon, it is reasonable to assume that as a spacecraft\u27s surfaces evolve, so too do it\u27s SEE characteristics. In order to determine whether or not charging models need incorporate the effects of changing surface conditions aboard operating spacecraft, data assessing the impact of these changes on the SEE characteristics of various surfaces are required. Measurements have therefore been made investigating the dynamic evolution of secondary electron (SE) yields resulting from energetic electron bombardment of typical spacecraft materials in a rarefied atmosphere representative of the microenvironment surrounding space vehicles. A detailed report of the experiment and results has been given elsewhere [Davies, 1996; Davies and Dennison, 1997]; what follows here is a brief summary

    JPL tests of a LaJet concentrator facet

    Get PDF
    A LaJet Energy Company (LEC) concentrator facet, 60 in. in diameter, was tested for imaging quality. The following two methods were used: (1) autofocus tests with a point source of light at the facet's radius of curvature; and (2) tests with the Sun close to the horizon as a distant source. The tests of the LaJet facet indicate that all of the solar image reflected by an LEC 460 solar concentrator made of like facets should fall within a 9-in. aperture if the outer facets are carefully adjusted. Such a concentrator would have acceptable performance, but complete evaluation must be made with an assembled concentrator
    corecore