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Introduction

Secondary electron emission (SEE) plays a key role in spacecraft
charging [Garrett, 1981; Frooninckx and Sojka, 1992] .  As a re-
sult, spacecraft charging codes require knowledge of the SEE char-
acteristics of various materials in order to predict vehicle potentials
in various orbital environments [Katz, et. al., 1986]. Because SEE
is a surface phenomenon, occurring in the first few atomic layers of
a material, the SEE characteristics of a given surface are extremely
sensitive to changes in surface condition—e.g.,  the addition or
removal of surface contaminants, or changes in surface morphology.
That spacecraft surfaces can and generally do undergo significant
evolution during their operational lifetimes is a fact well estab-
lished by NASA's Long Duration Exposure Facility (LDEF)
[Crutcher, et al., 1991a].  Deposition and removal of contaminants
can occur as a result of preferential adsorption of gases on cooler
surfaces, the collection of ionized gases on negatively charged sur-
faces, atomic-oxygen-induced oxidation, photodissociation under
vacuum uv bombardment, and ion-induced desorption.  Since SEE
is material-dependent phenomenon, it is reasonable to assume that
as a spacecraft's surfaces evolve, so too do it's SEE characteristics.

In order to determine whether or not charging models need in-
corporate the effects of changing surface conditions aboard operat-
ing spacecraft, data assessing the impact of these changes on the
SEE characteristics of various surfaces are required.  Measure-
ments have therefore been made investigating the dynamic evolu-
tion of secondary electron (SE) yields resulting from energetic
electron bombardment of typical spacecraft materials in a rarefied
atmosphere representative of the microenvironment surrounding
space vehicles.  A detailed report of the experiment and results has
been given elsewhere [Davies, 1996; Davies and Dennison, 1997];
what follows here is a brief summary.

Experiment and Instrument

A sample of oxidized aluminum was placed inside an ultra-high
vacuum (UHV) chamber alongside a piece of PTFE (Teflon®)
coated wire and continuously bombarded with 1-3 keV electrons for
~30 hours. The SE yield of the surface was monitored as a function
of time throughout the electron bombardment. Oxidized aluminum
was chosen as a typical material comprising spacecraft surfaces,
while outgassing of the Teflon wire contaminated the UHV envi-
ronment, simulating the microenvironment surrounding an operat-
ing spacecraft.  Continuous electron bombardment resulted in two
effects—(i) the removal of the oxide layer, and (ii ) the deposition
of a thin (~1 nm-thick) layer of carbon contamination—duplicating
the surface effects of other processes known to occur in Earth orbit.

Results

Total SE yield of the surface, δ, as a function of time is depicted
in Fig. 1.  Detailed analysis of the data reveal the following: (i) an
approximately 30% decrease in δ due to removal of the oxide layer
(region I), and (ii ) an approximately 57% drop in δ due to the
deposition of an ~1 nm-thick carbon layer (region II) [Davies and
Dennison, 1997].  The combined effect was a reduction in δ from
~0.58 to ~0.25—a decrease of more than a factor of two over ~30
hrs.

Fig. 1  Secondary yield vs. time for 2.0-keV electrons continu-
ously incident on contaminated aluminum surface.

Discussion

Rates of contaminant deposition and removal observed in this
investigation are representative of those recorded aboard LDEF
[Crutcher, et al., 1991b], and the vacuum and contaminant levels
employed are typical of operating spacecraft in low-Earth orbit.
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Thus it is reasonable to assume that the SE reduction observed in
our laboratory is representative of that which can be expected for
an oxidized aluminum surface aboard an operating spacecraft.
Furthermore, because the most troublesome spacecraft potentials
are negative, the reduction of a surface's SE yield translates to in-
creased spacecraft-to-plasma charging levels for a given set of envi-
ronmental conditions.  It is noted that the mechanisms responsible
for the sample surface modifications in our laboratory—namely, the
electron-beam-induced desorption of the oxide layer and deposition
of carbon—are not likely to be important in the space environment,
as the beam current densities used in the laboratory (~10-3 A cm-2)
were seven orders of magnitude greater than those found in space
(~10-10 A cm-2) [Davies and Dennison, 1997; Hardy, et.al., 1985].

Conclusion

The work presented here serves to demonstrate the degree to
which SEE yields can be expected to vary as a result of surface
evolution.  In this regard, the data make it clear that in order to
properly assess electrical potentials to which spacecraft may be
subject over their entire operational lifetimes, charging codes must
incorporate knowledge of how the vehicle's SEE characteristics can
be expected to change as its surface evolves.  As an operational
matter, the data are as yet insufficient for inclusion into spacecraft
charging codes.  In order for modelers to include the effects of sur-
face evolution, SE yield-versus-energy curves will be required for a
variety of spacecraft materials subject to varying degrees and kinds
of contamination.  Investigations of this type are presently under-
way at Utah State University under the sponsorship of NASA's
Space Environment and Effects program.
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