114 research outputs found

    Appropriate Antitrust Policy Towards Single-Firm Conduct

    Get PDF
    In this article we distinguish between two types of single-firm conduct. The first, which we call "extraction," is conduct engaged in by the firm to capture surplus from what the firm has itself created independent of the conduct’s effect on rivals. The second, which we call “extension," is single firm conduct that increases the firm’s profit by weakening or eliminating the competitive constraints provided by products of rivals. We propose as a fundamental antitrust policy towards single-firm conduct the following: Conduct merely to extract surplus the firm has created independent of the conduct’s effect on rivals should be permitted. Conversely, conduct that extends the firm’s market power by impairing the competitive constraints imposed by rivals presents a legitimate cause for concern. We subscribe strongly to the view that an essential element of appropriate antitrust policy is to allow a firm to capture as much of the surplus that, by its own investment, innovation, industry or foresight, the firm has itself brought into existence. We believe that alternative approaches to single-firm conduct, including in particular ones aiming to enhance static efficiency at the possible cost of dynamic efficiency and ones seeking to maximize overall welfare through more targeted intervention on a case-by-case basis (not to mention the use of competition policy to protect competitors rather than consumers) threaten seriously to impede economic growth and welfare over time. A policy that goes further, and which permits all unilateral conduct regardless of competitive effects (perhaps on grounds that "even more profit will generate even more innovation") is considered below and rejected as overly lenient, inconsistent with widely accepted presumptions in favor of inter-firm competition, and unwise, at least under the current state of economic knowledge. But we note that this conclusion is one based on our current economic knowledge and should remain a topic of ongoing research. It requires an empirical assessment of the gains from motivating more competition ex ante versus the subsequent loss of competition ex post.Competition, Single-Firm Conduct, Monopolization, Antitrust

    Proposal For A Market-Based Solution to Airport Delays

    Get PDF
    With the clamor rising over airport delays and with both the Congress and the Administration considering remedies, this paper advocates the use of market mechanisms, specifically slot auctions, to promote efficient usage of airport capacity, reduce airport delays, and, more generally, promote competition.

    Why age categories in youth sport should be eliminated: Insights from performance development of youth female long jumpers

    Get PDF
    Long-term sports participation and performance development are major issues in popular sports and talent development programs. This study aimed to provide longitudinal trends in youth female long jump performance development, participation, and relative age effects (RAEs), as longitudinal data for female athletes are missing. 51′894 season’s best results of female long jump athletes (n = 16′189) were acquired from the Swiss Athletics online database and analyzed within a range of 6–22 years of age. To examine longitudinal performance development and RAEs, data from athletes who participated in at least three seasons were selected (n = 41′253) and analyzed. Performance development was analyzed using age groups (AGs) and exact chronological age (CA) at competition. Differences between performances of birth quarters were analyzed using 83% confidence intervals (CIs) and smallest worthwhile change. Odds ratios (ORs) with 95% CI were used to quantify RAEs. With the traditional classification into age groups (AG), performances of athletes born between January and March (Q1) were significantly better than those born between October and December (Q4) from U8 to U17. Using exact CA resulted in similar performances in Q1 and Q4 until the U20 age category. The peak of participation was reached in the U12 category, and then decreased until the U23 category with a substantial drop at U17. Significant RAEs were observed from U8 to U19 and at U22. RAEs continuously decreased from U8 (large effect) to U14 (small effect). The present results show that differences in performance arise from the comparison of athletes in AGs. Thus, going beyond AGs and using exact CA, Q4 athletes could benefit from a realistic performance comparison, which promotes fair performance evaluation, un-biased talent development, realistic feedback, and long-term participation

    The Temperature of Interstellar Clouds from Turbulent Heating

    Full text link
    To evaluate the effect of turbulent heating in the thermal balance of interstellar clouds, we develop an extension of the log-Poisson intermittency model to supersonic turbulence. The model depends on a parameter, d, interpreted as the dimension of the most dissipative structures. By comparing the model with the probability distribution of the turbulent dissipation rate in a simulation of supersonic and super-Alfvenic turbulence, we find a best-fit value of d=1.64. We apply this intermittency model to the computation of the mass-weighted probability distribution of the gas temperature of molecular clouds, high-mass star-forming cores, and cold diffuse HI clouds. Our main results are: i) The mean gas temperature in molecular clouds can be explained as the effect of turbulent heating alone, while cosmic ray heating may dominate only in regions where the turbulent heating is low; ii) The mean gas temperature in high-mass star-forming cores with typical FWHM of ~6 km/s (corresponding to a 1D rms velocity of 2.5 km/s) may be completely controlled by turbulent heating, which predicts a mean value of approximately 36 K, two to three times larger than the mean gas temperature in the absence of turbulent heating; iii) The intermittency of the turbulent heating can generate enough hot regions in cold diffuse HI clouds to explain the observed CH+ abundance, if the rms velocity on a scale of 1 pc is at least 3 km/s, in agreement with previous results based on incompressible turbulence. Because of its importance in the thermal balance of molecular clouds and high-mass star-forming cores, the process of turbulent heating may be central in setting the characteristic stellar mass and in regulating molecular chemical reactions.Comment: Accepted by ApJ, 15 pages, 7 figure

    Proteomic Analysis of Polypeptides Captured from Blood during Extracorporeal Albumin Dialysis in Patients with Cholestasis and Resistant Pruritus

    Get PDF
    Albumin dialysis using the molecular adsorbent recirculating system (MARS) is a new therapeutic approach for liver diseases. To gain insight into the mechanisms involved in albumin dialysis, we analyzed the peptides and proteins absorbed into the MARS strong anion exchange (SAX) cartridges as a result of the treatment of patients with cholestasis and resistant pruritus. Proteins extracted from the SAX MARS cartridges after patient treatment were digested with two enzymes. The resulting peptides were analyzed by multidimensional liquid chromatography coupled to tandem mass spectrometry. We identified over 1,500 peptide sequences corresponding to 144 proteins. In addition to the proteins that are present in control albumin-derived samples, this collection includes 60 proteins that were specific to samples obtained after patient treatment. Five of these proteins (neutrophil defensin 1 [HNP-1], secreted Ly-6/uPAR-related protein 1 [SLURP1], serum amyloid A, fibrinogen alpha chain and pancreatic prohormone) were confirmed to be removed by the dialysis procedure using targeted selected-reaction monitoring MS/MS. Furthermore, capture of HNP-1 and SLURP1 was also validated by Western blot. Interestingly, further analyses of SLURP1 in serum indicated that this protein was 3-fold higher in cholestatic patients than in controls. Proteins captured by MARS share certain structural and biological characteristics, and some of them have important biological functions. Therefore, their removal could be related either to therapeutic or possible adverse effects associated with albumin dialysis

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF

    Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up

    Get PDF
    The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0
    corecore