41 research outputs found
Frequency dependent polarisation switching in h-ErMnO
We report an electric-field poling study of the geometric-driven improper
ferroelectric h-ErMnO. From a detailed dielectric analysis we deduce the
temperature and frequency dependent range for which single-crystalline
h-ErMnO exhibits purely intrinsic dielectric behaviour, i.e., free from
extrinsic so-called Maxwell-Wagner polarisations that arise, for example, from
surface barrier layers. In this regime ferroelectric hysteresis loops as
function of frequency, temperature and applied electric fields are measured
revealing the theoretically predicted saturation polarisation in the order of 5
- 6 C/cm. Special emphasis is put on frequency-dependent polarisation
switching, which is explained in terms of domain-wall movement similar to
proper ferroelectrics. Controlling the domain walls via electric fields brings
us an important step closer to their utilization in domain-wall-based
electronics.Comment: 5 pages, 3 figure
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
Electrical half-wave rectification at ferroelectric domain walls
Ferroelectric domain walls represent multifunctional 2D-elements with great
potential for novel device paradigms at the nanoscale. Improper ferroelectrics
display particularly promising types of domain walls, which, due to their
unique robustness, are the ideal template for imposing specific electronic
behavior. Chemical doping, for instance, induces p- or n-type characteristics
and electric fields reversibly switch between resistive and conductive
domain-wall states. Here, we demonstrate diode-like conversion of
alternating-current (AC) into direct-current (DC) output based on neutral
180 domain walls in improper ferroelectric ErMnO. By combining
scanning probe and dielectric spectroscopy, we show that the rectification
occurs for frequencies at which the domain walls are fixed to their equilibrium
position. The practical frequency regime and magnitude of the output is
controlled by the bulk conductivity. Using density functional theory we
attribute the transport behavior at the neutral walls to an accumulation of
oxygen defects. Our study reveals domain walls acting as 2D half-wave
rectifiers, extending domain-wall-based nanoelectronic applications into the
realm of AC technology
Genetic drivers of heterogeneity in type 2 diabetes pathophysiology
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p
Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
Beneficial effects of natural eggshell membrane versus placebo in exercise-induced joint pain, stiffness, and cartilage turnover in healthy, postmenopausal women
Purpose: Despite its many health benefits, moderate exercise can induce joint discomfort when done infrequently or too intensely even in individuals with healthy joints. This study was designed to evaluate whether NEM (R) (natural eggshell membrane) would reduce exercise-induced cartilage turnover or alleviate joint pain or stiffness, either directly following exercise or 12 hours post exercise, versus placebo. Patients and methods: Sixty healthy, postmenopausal women were randomly assigned to receive either oral NEM 500 mg (n=30) or placebo (n=30) once daily for two consecutive weeks while performing an exercise regimen (50-100 steps per leg) on alternating days. The primary endpoint was any statistically significant reduction in exercise-induced cartilage turnover via the biomarker C-terminal cross-linked telopeptide of type-II collagen (CTX-II) versus placebo, evaluated at 1 and 2 weeks of treatment. Secondary endpoints were any reductions in either exercise-induced joint pain or stiffness versus placebo, evaluated daily via participant questionnaire. The clinical assessment was performed on the per protocol population. Results: NEM produced a significant absolute treatment effect (TEabs) versus placebo for CTX-II after both 1 week (TEabs - 17.2%, P=0.002) and 2 weeks of exercise (TEabs - 9.9%, P=0.042). Immediate pain was not significantly different; however, rapid treatment responses were observed for immediate stiffness (Day 7) and recovery pain (Day 8) and recovery stiffness (Day 4). No serious adverse events occurred and the treatment was reported to be well tolerated by study participants. Conclusion: NEM rapidly improved recovery from exercise-induced joint pain (Day 8) and stiffness (Day 4) and reduced discomfort immediately following exercise (stiffness, Day 7). Moreover, a substantial chondroprotective effect was demonstrated via a decrease in the cartilage degradation biomarker CTX-II.ESM Technologies, LLCOpen access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]