4,579 research outputs found

    Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex

    Get PDF
    High-gamma-band (\u3e60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles are the result of asynchronous firing activity that yields wideband and uniform power increases. Others have demonstrated independence of power changes in the low- and high-gamma bands, but to date, no studies have shown evidence of any such independence above 60 Hz. Based on nonuniformities in time-frequency analyses of electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma-band (60-500 Hz) power changes are more heterogeneous than currently understood. Using single-word repetition tasks in six human subjects, we showed that functional responsiveness of different ECoG high-gamma sub-bands can discriminate cognitive task (e.g., hearing, reading, speaking) and cortical locations. Power changes in these sub-bands of the high-gamma range are consistently present within single trials and have statistically different time courses within the trial structure. Moreover, when consolidated across all subjects within three task-relevant anatomic regions (sensorimotor, Broca\u27s area, and superior temporal gyrus), these behavior- and location-dependent power changes evidenced nonuniform trends across the population. Together, the independence and nonuniformity of power changes across a broad range of frequencies suggest that a new approach to evaluating high-gamma-band cortical activity is necessary. These findings show that in addition to time and location, frequency is another fundamental dimension of high-gamma dynamics

    A generalised abundance index for seasonal invertebrates

    Get PDF
    At a time of climate change and major loss of biodiversity, it is important to have efficient tools for monitoring populations. In this context, animal abundance indices play an important role. In producing indices for invertebrates, it is important to account for variation in counts within seasons. Two new methods for describing seasonal variation in invertebrate counts have recently been proposed; one is nonparametric, using generalized additive models, and the other is parametric, based on stopover models. We present a novel generalized abundance index which encompasses both parametric and nonparametric approaches. It is extremely efficient to compute this index due to the use of concentrated likelihood techniques. This has particular relevance for the analysis of data from long-term extensive monitoring schemes with records for many species and sites, for which existing modeling techniques can be prohibitively time consuming. Performance of the index is demonstrated by several applications to UK Butterfly Monitoring Scheme data. We demonstrate the potential for new insights into both phenology and spatial variation in seasonal patterns from parametric modeling and the incorporation of covariate dependence, which is relevant for both monitoring and conservation. Associated R code is available on the journal website

    Dynamic models for longitudinal butterfly data

    Get PDF
    There has been recent interest in devising stochastic models for seasonal insects, which respond rapidly to climate change. Fitted to count data, these models are used to construct indices of abundance, which guide conservation and management. We build upon Dennis et al. (2014, under review) to produce dynamic models, which provide succinct descriptions of data from all years simultaneously. They produce estimates of key life-history parameters such as annual productivity and survival. Analyses for univoltine species, with only one generation each year, extend to bivoltine species, with two annual broods. In the latter case we estimate the productivities of each generation separately, and also devise extended indices which indicate the contributions made from different generations. We demonstrate the performance of the models using count data for UK butterfly species, and compare with current procedures which use generalized additive models. We may incor- orate relevant covariates within the model, and illustrate using northing and measures of temperature. Consistent patterns are demonstrated for multiple species. This generates a variety of hypotheses for further investigation, which have the potential to illuminate features of butterfly phenology and demography which are at present poorly understood

    Hyphema. Part II. Diagnosis and Treatment

    Get PDF
    The clinical appearance of hyphema is variable and is influenced by the volume of blood and the amount of time erythrocytes are present in the anterior chamber. When hyphema is evident, a complete history should be obtained and a thorough physical examination performed to direct the initial selection of diagnostic tests. Secondary complications of hyphema include glaucoma, synechiae, cataract formation, blood-staining of the cornea, and blindness. Frequent measurement of intraocular pressure is recommended. The two primary management issues in animals with hyphema are prevention of secondary hemorrhage (by treating the underlying disease) and control of secondary glaucoma

    Hyphema. Part I. Pathophysiologic Considerations

    Get PDF
    Hemorrhage in the anterior chamber of the eye, or hyphema, results from a breakdown of the blood-ocular barrier (BOB) and is frequently associated with inflammation of the iris, ciliary body, or retina. Hyphema can also occur by retrograde blood flow into the anterior chamber via the aqueous humor drainage pathways without BOB breakdown. Hyphema attributable to blunt or perforating ocular trauma is more common than that resulting from endogenous causes. When trauma has been eliminated as a possible cause, it is prudent to assume that every animal with hyphema has a serious systemic disease until proven otherwise

    Hyphema. Part II. Diagnosis and Treatment

    Get PDF
    The clinical appearance of hyphema is variable and is influenced by the volume of blood and the amount of time erythrocytes are present in the anterior chamber. When hyphema is evident, a complete history should be obtained and a thorough physical examination performed to direct the initial selection of diagnostic tests. Secondary complications of hyphema include glaucoma, synechiae, cataract formation, blood-staining of the cornea, and blindness. Frequent measurement of intraocular pressure is recommended. The two primary management issues in animals with hyphema are prevention of secondary hemorrhage (by treating the underlying disease) and control of secondary glaucoma
    corecore