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Dynamic Models for Longitudinal Butterfly
Data

Emily B. Dennis, Byron J. T.Morgan, Stephen N. Freeman, David B.
Roy, and Tom Brereton

Wepresent models which provide succinct descriptions of longitudinal seasonal insect
count data. This approach produces, for the first time, estimates of the key parameters of
brood productivities. It may be applied to univoltine and bivoltine species. For the latter,
the productivities of each brood are estimated separately, which results in new indices
indicating the contributions from different generations. The models are based on discrete
distributions, with expectations that reflect the underlying nature of seasonal data. Pro-
ductivities are included in a deterministic, auto-regressive manner, making the data from
each brood a function of those in the previous brood. A concentrated likelihood results in
appreciable efficiency gains. Both phenomenological and mechanistic models are used,
including weather and site-specific covariates. Illustrations are provided using data from
the UK Butterfly Monitoring Scheme, however the approach is perfectly general. Con-
sistent associations are found when estimates of productivity are regressed on northing
and temperature. For instance, for univoltine species productivity is usually lower fol-
lowing milder winters, and mean emergence times of adults for all species have become
earlier over time, due to climate change. The predictions of fitted dynamic models have
the potential to improve the understanding of fundamental demographic processes. This
is important for insects such as UK butterflies, many species of which are in decline.
Supplementary materials for this article are available online.

Key Words: Abundance indices; Auto-regression; Concentrated likelihood;
Generalised additive models; Phenology; Stopover models.

1. INTRODUCTION

Climate change is predicted to become an increasingly important cause of biodiversity
decline (Thomas et al. 2004; Pereira et al. 2010). Species’ responses to climate are often
complex and present challenges for modelling and prediction. We illustrate the models of
this paper with reference to butterflies, the most comprehensively monitored insects. Their
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population status is increasingly recognised as an indicator for changes in biodiversity as
they respond sensitively and rapidly to changes in habitat and climate (Thomas 2005).

Previous studies of UK butterflies imply positive associations of populations with warm
summer weather, but predicted relationships with winter weather are variable (Roy et al.
2001; Dennis and Sparks 2007; Isaac et al. 2011). Evidence for shifts in phenology (Roy
and Sparks 2000) and increases in voltinism (Altermatt 2010) have also been presented.

Extensive sources of citizen-science count data for butterflies are available both in theUK
and around the world, and there is much interest in developing robust modelling approaches
to assist the monitoring and understanding of species’ responses to change. Butterflies have
multi-stage life cycles, and counts fluctuate within each year in response to their emergence
as adults, which is generally the only life stage with widespread data. Soulsby and Thomas
(2012) developed a mathematical model for this variation, but only allowed for discrete,
non-overlapping generations. Other models have been proposed to describe the within-year
variation, both non-parametrically using generalised additive models (GAMs, Rothery and
Roy 2001; Dennis et al. 2013) and via stochastic mixture models (Matechou et al. 2014;
Dennis et al. 2014). Counts adjusted for seasonal fluctuations can then be used to produce
longer-term trends, but existing methods do not impose any relationship between counts
from one year to the next, which is the topic of this paper.

Causes of variation in both abundance and seasonal pattern from one year to the next are
multi-faceted, relating to numbers during the previous year, as well as other factors driving
the unobserved stages of the life-cycle, such as weather. We describe a novel dynamic
framework which models count data across multiple sites from consecutive years, with
abundance in any given year driven by that in the previous year. We adapt the approach for
bivoltine species, with the first brood in a year feeding into the second. The models can
be fitted efficiently using concentrated likelihoods. Performance is illustrated for a sample
of species, making comparisons with indices generated from GAMs, and introducing new
methods of exploring covariate dependence.

Although we present and illustrate the work in terms of butterflies, it may be applied to
other insect species, possibly after modification appropriate to their ecology. For example,
the flightless longhorn beetle,Dorcadion fuliginator, takes two years to reachmaturity (Baur
et al. 2005), as do many dragonflies and some crickets. The models may also be adapted for
the study of migrant bird populations.

2. MATERIALS AND METHODS

For any species, suppose counts of adults are recorded at S sites, each visited on up to T
occasions, in each of Y successive years. Each can be treated as the realisation of a random
variable from a suitable discrete distribution. For example, if this is taken as Poisson, with
expectation λi, j,k for site i , visit j and year k, the likelihood has the form

L(ρ,μ, σ , N1; y) =
S∏

i=1

T∏

j=1

Y∏

k=1

exp(−λi, j,k)λ
yi, j,k
i, j,k

yi, j,k ! ,
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where {yi, j,k} are the counts and ρ, μ, σ and N1, are the model parameters which we
describe in the next sections.

We adopt the Poisson distribution throughout, but there are other possibilities, such as
negative-binomial or zero-inflated Poisson, for which an approximate concentrated likeli-
hood approach is possible (Dennis et al. 2014). Alternatively, Pagel et al. (2014) accounted
for overdispersion with respect to this simple model by a mixed log-normal-Poisson distri-
bution.

The methods of the paper provide joint modelling of data obtained at different temporal
scales. We consider two model types which are structurally different: a phenomenological
model based simply on normal probability density functions and mechanistic models that
are based upon stopover models, which involve mechanisms allowing for estimation of
survival.

2.1. PHENOMENOLOGICAL MODEL FOR UNIVOLTINE SPECIES

For a univoltine species, the counts within a season increase from zero and then decrease
to zero corresponding to the emergence and death of adult butterflies. This variation may
be described by Normal probability density N (μi,k, σ

2
i,k), corresponding to site i and year

k, so that for the j th visit at time ti, j,k (e.g. week number in the season) we have

λi, j,k = Ni,k
1

σi,k
√
2π

exp

{
− (ti, j,k − μi,k)

2

2σ 2
i,k

}
, (1)

which we write as λi, j,k = Ni,kai, j,k , where Ni,k provides an estimate of relative abun-
dance for site i in a given year, k, and {ai, j,k} describes the seasonal variation over visits
within that year. Thus for site i and year k, the counts for any visit have a Poisson dis-
tribution with mean value proportional to the Normal probability density function centred
on μi,k .

We allow the relative abundance Ni,k+1, for site i and year k + 1, to depend upon that
in the previous year, Ni,k , in a deterministic first-order auto-regressive manner via a growth
rate, ρi,k which, assuming the species does not overwinter as an adult (in which case a model
for multiple generations is required), we define as “productivity”, i.e. Ni,k+1 = ρi,k Ni,k .
Developing this recursion over time provides

λi, j,1 = Ni,1ai, j,1 and λi, j,k = Ni,kai, j,k =
(

Ni,1

k−1∏

m=1

ρi,m

)
ai, j,k for k > 1, (2)

which is similar to themodel in Freeman andNewson (2008), butwith a seasonal component.
The productivities, {ρi,k}, describe the successes of a given generation over sites (i) for each
year (k) and represent products of the number of eggs laid per adult and the probability of each
egg reaching the adult stage in the next generation. The expressions of Eq. (2) characterise
the univoltine models of the paper, with different formulations for the seasonal pattern,
{ai, j,k}, providing different models, as we shall see for a mechanistic model formulation in
Sect. 2.3.
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2.2. PHENOMENOLOGICAL MODEL FOR BIVOLTINE SPECIES

Bivoltine butterfly species have two broods each year, with the adults of the second
brood arising from the eggs laid by the adults of the first. We may extend the model above
to describe counts from two annual broods by incorporating two Normal distributions in the
model for λi, j,k . Thus we set

λi, j,k = Ni,k,1
1

σi,k,1
√
2π

exp

{
− (ti, j,k − μi,k,1)

2

2σ 2
i,k,1

}

+ Ni,k,2
1

σi,k,2
√
2π

exp

{
− (ti, j,k − μi,k,2)

2

2σ 2
i,k,2

}
,

which we may write as

λi, j,k ≡ Ni,k,1ai, j,k,1 + Ni,k,2ai, j,k,2,

where at site i in year k the relative abundance for the first brood is given by Ni,k,1 and for
the second brood by Ni,k,2. For the means and variances of the two Normal densities, the
final subscripts designate brood, and we have μi,k,2 > μi,k,1.

Whereas in Dennis et al. (2014) two broods are described by a mixture of probability
density functions, here the relative abundance of a second brood in each year is assumed to
depend on that of the first brood that year. Dependence between the two broods in any year
is introduced by defining

Ni,k,2 = ρi,k,1Ni,k,1,

in addition to the between-year dependence, now given by

Ni,k+1,1 = ρi,k,2Ni,k,2.

Thus, ρi,k,1 represents the productivity of the first brood in a given year k, and ρi,k,2 repre-
sents the productivity of the second brood, which feeds into the relative abundance of the
first brood of the following year, Ni,k+1,1. So developing the recursion over time we write

λi, j,1 = Ni,1,1ai, j,1,1 + Ni,1,2ai, j,1,2

= Ni,1,1(ai, j,1,1 + ρi,1,1ai, j,1,2), (3)

and

λi, j,k = Ni,k,1ai, j,k,1 + Ni,k,2ai, j,k,2

=
(

Ni,1,1

k−1∏

m=1

2∏

b=1

ρi,m,b

)
ai, j,k,1 +

(
Ni,1,1ρi,k,1

k−1∏

m=1

2∏

b=1

ρi,m,b

)
ai, j,k,2

= Ni,1,1
(
ai, j,k,1 + ρi,k,1ai, j,k,2

) k−1∏

m=1

2∏

b=1

ρi,m,b for k > 1. (4)
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The extension to multivoltine species with greater than two broods each year is imme-
diate, though not greatly applicable to the UK species. The new development for bivoltine/
multivoltine species is naturally based on the fact that the relative size of a given brood
depends on the productivity of the previous brood. Notationally, we denote the phenomeno-
logical models by PB , where B is the number of broods.

2.3. MECHANISTIC AND STOPOVER MODELS

Relatively little is known regarding butterfly survival, and what is known results from
local short-term mark-recapture programmes, which are expensive. To build survival into
our models we introduce additional parameters, the emergence times of adults, which are
typically unknown and of interest in their own right as indicators of phenological change in
a specific, key point in a species’ life-cycle. We do this as follows.

Suppose first of all that there is only one brood, and a site abundance Ni,k for site i and
year k. In order to describe the emergence times we introduce parameters βi,d−1,k , which
describe the proportions of Ni,k emerging at site i and just prior to visit d in year k. The
expected number of individuals at site i at time ti, j,k in year k is given as

λi, j,k = Ni,kai, j,k = Ni,k

⎧
⎨

⎩

j∑

d=1

βi,d−1,k

⎛

⎝
j−1∏

m=d

φi,m,k

⎞

⎠

⎫
⎬

⎭ , (5)

where the index d = 1, . . . , j indicates the possible times of emergence for an indi-
vidual detected on visit j . The parameters βi,d−1,k describe the proportions of Ni,k

emerging at site i and visit d in year k, such that
∑T

d=1 βi,d−1,k = 1, for each site
i and year k. We define φi,m,k as the probability that an individual that is present at
site i at visit m in year k, will remain at that site until visit m + 1. So for example,
λi,3,k = Ni,k

(
βi,0,kφi,1,kφi,2,k + βi,1,kφi,2,k + βi,2,k

)
.

In order that the emergence parameters have the right type of shape we can set

βi,d−1,k = Fi,k(ti,d,k) − Fi,k(ti,d,k − 1), (6)

where Fi,k(ti,d,k) = P(X ≤ ti,d,k) for X ∼ N (μi,k, σ
2
i,k), where μi,k is the mean date of

emergence and σ 2
i,k is the associated variance. For each i , k, βi,0,k = Fi,k(1) and βi,T −1,k =

1 − Fi,k(T − 1).
This is a simple stopover model, proposed for butterfly data by Matechou et al. (2014);

see alsoDennis et al. (2014). Stopovermodels are used in describing data onmigrating birds,
which rest and feed during their journey at particular stopover sites where observations take
place. Typically, the resulting counts, graphed over time, reflect successive waves of birds
arriving, staying and then leaving. Matechou et al. (2014) observe that this is the same
pattern seen when adult butterflies are counted within a season, with for example bivoltine
species analogous to two waves of birds observed at a stopover site.

In Matechou et al. (2014), the above model is extended to account for multivoltine
data, and the expression of Eq. (6) then becomes a mixture of terms, each of which is an
area under an appropriate probability density function. In the multivoltine case, we need a
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different dynamic mechanistic model, in order to allow for the abundance of one brood to
feed into that of a succeeding brood, during the same year.

In the univoltine dynamic stopover model, the recursions of Eq. (2) apply, but now with
the different specification of {ai, j,k} provided by Eq. (5). For the multivoltine case in the
dynamic mechanistic model, we assign a separate site abundance to each brood in a year.
Thus, we assume the two broods for bivoltine species to be separate such that, for site i ,
visit j and brood b, in year k, we extend Eq. (5) to give

ai, j,k,b =
j∑

d=1

βi,d−1,k,b

⎛

⎝
j−1∏

m=d

φi,d,k,b

⎞

⎠ , for b = 1, 2, (7)

where we define {φi,d,k,b} as the appropriate survival probabilities of an individual from
one visit to the next, which are now estimated separately for each brood. This development
is an extension of that in the original specification of Matechou et al. (2014). For brood
b, the parameters {βi,d−1,k,b} describe the proportions of Ni,k,b arriving at visit d, and are
modelled here using Normal distributions, so that

βi,d−1,k,b = Fi,k,b(ti,d,k) − Fi,k,b(ti,d,k − 1),

where Fi,k,b(ti,d,k) = Pr(X ≤ ti,d,k), for X ∼ N (μi,k,b, σ
2
i,k,b), andμi,k,b is the appropriate

mean date of emergence of adults for brood b and σ 2
i,k,b is the corresponding variance. For

each i , k, andb,βi,0,k,b = Fi,k,b(1) andβi,T −1,k,b = 1−Fi,k,b(T −1). The recursions ofEqs.
(3) and (4) then apply, but nowwith the new specification of {ai, j,k,b} fromEq. (7). Notation-
ally, we specify the dynamic mechanistic model by MB , where B is the number of broods.

2.4. CONCENTRATED LIKELIHOOD

We fit models to data by maximum likelihood. As in Dennis et al. (2014), the number of
parameters in the likelihood can be reduced by S, using a concentrated likelihood approach. S
is typically large for these models and so computational efficiency is substantially increased.
We consider first the univoltine case. Using Eq. (2), apart from an additive constant, the log-
likelihood for site i may be written as

�i = Log(Li ) =
T∑

j=1

[
−Ni,1ai, j,1 + yi, j,1log

(
Ni,1ai, j,1

)

+
Y∑

k=2

{
−Ni,1ai, j,1

k−1∏

m=1

ρi,m + yi, j,k log

(
Ni,1ai, j,k

k−1∏

m=1

ρi,m

)}]
. (8)

For the data from all sites, the log-likelihood is � = ∑S
i=1 �i . Using Eq. (8) we obtain

∂�

∂ Ni,1
=

T∑

j=1

{
−ai, j,1 + yi, j,1

Ni,1
+

Y∑

k=2

(
−ai, j,1

k−1∏

m=1

ρi,m + yi, j,k

Ni,1

)}
,
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and equating to zero we find

Ni,1 =
T∑

j=1

∑Y
k=1 yi, j,k

ai, j,1 + ∑Y
k=2 ai, j,k

∏k−1
m=1 ρi,m

. (9)

We note how Ni,1 is a weighted sum over visits of totals at site i across years. Thus, despite
an apparent strong dependence of {Ni,k} on {Ni,1} in (2), this is only a consequence of the
deterministic links between the {Ni,k}, and all data contribute to the estimation of {Ni,1},
and hence {Ni,k}. Substitution of the expressions for {Ni,1} from (9) in (8) results in a
concentrated likelihood, which is maximised with respect to only the parameters associated
with ρ and a (which contain the elements of μ and σ ). Estimation of {Ni,1} is then made
by substituting estimates of {ai, j,k} and {ρi,m} into (9). The above approach holds for both
phenomenological and mechanistic models.

The concentrated likelihood for the bivoltine case is given similarly in the appendix. We
maximise the concentrated likelihoods using the optim function in R (R Core Team 2015),
with the limited-memory BFGS algorithm (Byrd et al. 1995). Associated R code for the
dynamic models is provided in the Supplementary Material.

2.5. ANNUAL INDEX OF ABUNDANCE

In the following, we write θ̂ for the maximum-likelihood estimate of θ , for any parameter
θ . The averages of the relative site abundance estimates, for each year k, are used to create
an index of abundance Gk for year k. For a univoltine species, we set

Gk = 1

S

S∑

i=1

N̂i,k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

S

S∑

i=1

N̂i,1 if k = 1

1

S

S∑

i=1

(
N̂i,1

k−1∏

m=1

ρ̂i,m

)
if k > 1,

(10)

for k = 1, . . . , Y , from equations (2). Similarly for the bivoltine case, we estimate an index
Gk,b for each brood, b = 1, 2, as

Gk,1 = 1

S

S∑

i=1

N̂i,k,1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

S

S∑

i=1

N̂i,1,1 if k = 1

1

S

S∑

i=1

(
N̂i,1,1

k−1∏

m=1

2∏

b=1

ρ̂i,m,b

)
if k > 1,

(11)

and

Gk,2 = 1

S

S∑

i=1

N̂i,k,2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

S

S∑

i=1

N̂i,1,1ρ̂i,k,1 if k = 1

1

S

S∑

i=1

(
N̂i,1,1ρ̂i,k,1

k−1∏

m=1

2∏

b=1

ρ̂i,m,b

)
if k > 1,

(12)



8 E.B. Dennis et al.

for k = 1, . . . , Y ,making use of the recursions demonstrated inEqs. (3) and (4). The separate
brood indices can be added to produce a single, annual index but there is potentially great
ecological benefit in maintaining them separately, as each corresponds to different times of
year and may be driven by different environmental factors.

Once indices are formed they are plotted against year, and we shall see examples in Sect.
3. Standard errors for the indices can be obtained via bootstrapping, as for other methods
(Dennis et al. 2013; Dennis et al. 2014). Error bars are not presented here for clarity, but in
general the differences between the indices derived from the dynamicmodels and alternative
methods (which we explore in the next section) are smaller than the size of the errors.

2.6. APPLICATION

We apply the dynamic models to national monitoring scheme data for a subset of UK
butterfly species. The UK Butterfly Monitoring Scheme (UKBMS) is the primary source of
count data for UK butterflies. The scheme relies on recorders who count butterflies under
favourable conditions each week between early April and late September, the main period
for butterfly activity. This results in a maximum of T = 26 each year, though typically not
all of the 26 designated visits are made, so the data do not need to be equally spaced. The
UKBMS has grown gradually since it began in 1976 to over 1100 sites monitored in 2012
(Botham et al. 2013). Population trends are typically calculated annually for 56 of the 59
butterfly species regularly found in the UK.

Many studies of UKBMS data involve application to a single illustrative species (Mate-
chou et al. 2014; Pagel et al. 2014). We demonstrate the dynamic models with application to
a sample of representative, taxonomically and ecologically diverse species. Six univoltine
and five bivoltine species were selected, with varying range size, habitat requirements and
phenologies, although very scarce, habitat-specialist species, which generally have limited
data, were not considered in this analysis. Each model was fitted to data for 1978–2011.
The UK butterfly transect data used in this study are archived by the UKBMS (http://www.
ukbms.org).

Sites at which the species of interest was never recorded or at which monitoring was
undertaken for fewer than five years were excluded from this analysis. For illustration, a
subset of 100 monitored sites was randomly selected for each species, with the exception of
Holly Blue, for which a sample of up to 200 sites was instead taken, since using only 100
sites produced bias in the estimates of productivity.

We illustrate the performance of the dynamic models in terms of abundance indices,
productivity, survival and phenology. Additional figures and tables are given in Appendix
S1 of the Supplementary Material. This will be done for the samples of the univoltine
and bivoltine species, with and without the addition of covariates. Where parameters were
assumed to be constant spatially the subscript for site, i , is omitted. In models for bivoltine
species, we let μ2 = μ1 + μd , where μ1 ≥ 0 and μd > 0, to ensure that μ2 > μ1.

The covariates we select are northing and measures of temperature. They were chosen
to demonstrate the potential of the models, and may not be optimal. All covariates were
standardised to have zero mean and unit variance. We use monthly mean and minimum
Central England Temperature data (Parker et al. 1992).

http://www.ukbms.org
http://www.ukbms.org
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The average minimum daily temperature during October–March was used as a covariate
for overwinter productivity. For bivoltine species, the mean temperature within the flight
period of the first brood was used to describe productivity of the first brood. Productivities,
which are necessarily positive, were regressed on the log scale. Survival in mechanistic
models was logistically regressed on mean temperature within the flight period of the brood
of interest. Scientific names and approximate flight periods for the species studied are pro-
vided in Table S1.1, and the latter were used to indicate the relevant temperature covariates.
Due to interest in the possible effect of covariates on estimates of survival, we primar-
ily use mechanistic models when covariates are employed and phenomenological models
otherwise, however alternatives are also possible.

3. RESULTS

3.1. INDICES

Indices of abundance are derived from estimates of annual productivity and estimates of
initial abundance from the dynamic model, as described in Sect. 2.5. Here μ and σ have
been considered constant, although varying these between years provides useful information
and we shall see examples of this later, but it had no distinguishable effect on indices of
abundance. We compare relative abundance indices for model P1 and an approach with
GAM-based models for seasonal patterns, currently adopted by the UKBMS and described
by Dennis et al. (2013). To compare the different indices, each index was standardised to
have zeromean and unit variance. An additional comparisonwith the generalised abundance
index (GAI) approach (Dennis et al. 2014) and consideration of goodness-of-fit are given
in Appendix S2 of the Supplementary Material.

The fitted phenomenological dynamic models discussed in the context of indices have
35 and 71 parameters for B = 1, 2, respectively. Given that Y = 34, in the univoltine case
there are 33 annual estimates ρk , as well as μ and σ , and in the bivoltine case, there are 34
parameters ρk,1 and 33 parameters ρk,2, in addition to μ1, μd , σ1 and σ2.

Figure 1a gives a comparison between annual indices of abundance for six univoltine
species. There is a good agreement between the indices resulting from the dynamic model
and the standard GAM approach (Dennis et al. 2013). By estimating an index for each
brood (Eqs. 11 and 12), dynamic models P2 allow us to add more information to indices
for bivoltine species, which we illustrate in two different ways in Figs. 2a and S1.1. We see
how the dynamic model allows us to elaborate the indices produced by the GAM approach,
by providing a separate index for each brood in the bivoltine case. This could, for example,
reveal differing trends between broods.

For model verification, Appendix S3 of the Supplementary Material summarises the
results of applying the dynamic models to simulated data.

3.2. PRODUCTIVITY

Figure 1b presents estimates of productivity for the univoltine species, from fitting model
P1. Values of ρk greater than unity indicate growth compared to the previous year, and values
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Figure 1. aRelative abundance indices for each univoltine species frommodel P1 (black, open circles, solid lines)
and the GAM approach (red, open triangles, dashed lines) and b annual estimates of productivity, ρk , from model
P1, which was fitted to estimate ρk across sites for each year. The horizontal dashed line separates productivities
above/below unity, corresponding to growth/decline compared to the previous year. Dotted lines represent 95 %
confidence intervals for productivity (Color figure online).



Dynamic Models for Longitudinal Butterfly Data 11

1980 1985 1990 1995 2000 2005 2010

−
1

1
2

3
4

In
de

x

W
al

l B
ro

w
n

(a)

1980 1985 1990 1995 2000 2005 2010

0
2

4
6

ρ k
,b

(b)

1980 1985 1990 1995 2000 2005 2010

−
2

0
2

4

In
de

x

H
ol

ly
 B

lu
e

1980 1985 1990 1995 2000 2005 2010

0
2

4
6

8
10

ρ k
,b

1980 1985 1990 1995 2000 2005 2010

−
2

0
1

2
3

In
de

x

S
m

al
l W

hi
te

1980 1985 1990 1995 2000 2005 2010

0
5

10
15

20

ρ k
,b

1980 1985 1990 1995 2000 2005 2010

−
2

0
1

2
3

4

In
de

x

B
ro

w
n 

A
rg

us

1980 1985 1990 1995 2000 2005 2010

1
2

3
4

ρ k
,b

1980 1985 1990 1995 2000 2005 2010

−
2

0
1

2
3

In
de

x

G
re

en
−

ve
in

ed
 W

hi
te

1980 1985 1990 1995 2000 2005 2010

0.
5

1.
5

2.
5

3.
5

ρ k
,b

Year

Figure 2. a Relative abundance indices for each bivoltine species for the first (black, open circles, solid lines) and
second (blue, closed diamonds, solid lines) broods from model P2 and the GAM approach (red, open triangles,
dashed lines) and b annual estimates of productivity for the first (ρk,1, black, open circles) and second (ρk,2, blue,
closed diamonds) brood from model P2, which was fitted to estimate ρk,b across sites for each brood and year.
The horizontal dashed line separates productivities above/below unity, corresponding to growth/decline compared
to the previous brood (Color figure online).

less than unity indicate decline.Hence as anticipatedwe see a tendency for productivities less
than unity for species in decline, such as Small Skipper in recent years, while for Marbled
White productivities tend to be above unity during the initial period of growth, followed by
recent fluctuations about unity, when the population appears to be relatively stable.

Figure 2b presents estimated productivities for each brood for five bivoltine species,
using model P2. Values above/below unity represent growth/decline relative to the previous
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brood. In Figure S1.2, we see how the productivities reflect the relative sizes of the fitted
seasonal curves, for which the average over the series is shown (standardised to sum to
unity). The relative sizes of the broods will actually vary with productivity each year.

Figure 3 shows the results of including covariates in the dynamic models, in this case
for model M1 with ρi,k and φi,k (which we revisit in Sect. 3.3) varying with temperature
and northing. It is interesting that with the exception of Gatekeeper, higher productivity is
significantly associated with cooler winters and in all cases with more Northerly latitudes
(regression coefficients and associated standard errors are presented in Table S1.2a).

Figure 4 shows the effect of adding covariates for bivoltine species, in this case for
model M2 with productivity varying with temperature and northing, and survival varying
with temperature, which we discuss further in Sect. 3.3. As detailed in Sect. 2.6, first-
brood productivity was associated with the mean temperature during the first brood, and
second-brood productivity with the minimum winter overwinter temperature. Associations
of first-brood productivity, ρi,k,1, with northing and weather varied between species, and
regression coefficients for the slope parameters were generally significant (Table S1.3a).
The association of higher productivity with cooler winters shown for univoltine species is
also found for the second brood of the bivoltine species, with the exception of Wall Brown
and Holly Blue, which is a common garden visitor, unlike the other species which favour
grasslands, as well as gardens in the case of Small White and Green-veined White.

Given an estimate of productivity for each year, if desired the geometric mean of the
productivities over time may be used to provide a simple comparison between species.

3.3. SURVIVAL

The mechanistic models allow estimation of the survival probabilities, φ, of butterflies,
from which adult life expectancies (in weeks) can be estimated by 1/(1 − φ), assuming
that a species does not overwinter as an adult. Variation in life expectancy with temperature
is displayed for univoltine species in Figure S1.3, and for bivoltine species in Figure S1.4,
based on themodels fitted with covariates in the previous section. Tables S1.2 and S1.3 show
the parameter estimates and associated standard errors from theMB models with covariates.
For comparison, estimates are also included for the P1 and P2 models with covariates for
ρ, which are not presented in the figures, but produce analogous estimates of the shared
parameters. There are differences in μ and σ since in the mechanistic model μ represents
the mean date of emergence which will be earlier than the mean flight date, and σ relates
to the length of the period of emergence, which will be shorter than the length of the flight
period in the P1 model. The associated errors for μ and σ are smaller for the P1 than for
the M1 model. For the bivoltine species, there is more variation in the estimates from P2
and M2. As in the univoltine case, standard errors from the phenomenological model tend
to be smaller than those from the mechanistic model. The MB models with covariates have
8 and 14 parameters for B = 1, 2, respectively, compared to the PB models with 5 and 10
parameters for B = 1, 2, respectively. In these cases, reduced precision is a consequence of
greater model complexity.

For univoltine species, there was a significant negative association of life expectancywith
higher average temperature during the flight period for four out of six species (Figure S1.3;
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Figure 3. Predicted
productivity with varying
minimum overwinter
temperature from model M1.
Each line represents one of 25
equally spaced northing values
within the species range (red at
southern sites and blue at
northern sites). Model M1 was
fitted with productivity, ρi,k , and
survival probability, φi,k ,
regressed on temperature and
northing (Color figure online).
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Figure 4. Predicted productivity with varying temperature frommodel M2. The mean temperature during the first
brood, and the minimum overwinter temperature were used as covariates for productivity of the first and second
brood, respectively. Each line represents one of 25 equally spaced Northing values within the species range (red at
southern sites and blue at northern sites). Model M2 was fitted with productivity, ρi,k,b , for each brood, b regressed
on temperature and northing and survival probability, φi,k,b , for each brood, b, regressed on temperature (Color
figure online).

Table S1.2a). Four univoltine species indicated significantly greater survival at southerly
sites. Standard errors in Table S1.2a) are generally small, but are large for two instances for
Green Hairstreak, which exhibit flatness in the associated plots (Figs. 3, S1.3).

As for the associations of first-brood productivity with weather, in bivoltine species we
find that the variation in first brood life expectancy with temperature differs between the
species sampled, and slope estimates were only significant for three out of five species
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(Table S1.3a). With the exception of Holly Blue, life expectancy for the second brood of the
bivoltine species increased significantly with temperature. Fitting model M2 with covariates
for northing andweather onρ andφ for each brood produced unrealistic estimates of lifespan
for Brown Argus and Holly Blue, hence in Figure S1.4 we allow φ in the M2 model to vary
with temperature and brood only. This requires further investigation, but is likely to be due
to the relatively large number of parameters in model M2 and/or relatively small size of the
sample. The corresponding standard errors for this model are sometimes large, for example,
for Holly Blue (Table S1.3a).

3.4. PHENOLOGY

Here we demonstrate the potential to produce estimates of phenology using the dynamic
models. The P1 and P2 models were fitted with ρ,μ and σ each varying with year. Hence the
P1 model requires 101 parameters to be estimated, corresponding to 33 parameters for ρk and
34 parameters each forμk and σk . Similarly the P2 model has 203 parameters: 34 for ρk,1, 33
for ρk,2, and 34 each for μk,1, μk,d , σk,1 and σk,2. To identify potential phenological trends,
the models were also fitted with the parameters of interest regressed upon year (indicated
by blue lines), as in the models fitted to univoltine species for comparison with the GAI
in Appendix S2 of the Supplementary Material. We perform simple linear regressions post
model-fitting to identify potential trends between μ and productivity ρ, where green lines
indicate significant regressions (p-value < 0.05).

Figure 5 gives the mean and standard deviation of the flight periods for the univoltine
species and corresponding figures for the bivoltine species are given in Figures S1.5 and
S1.6. Figures 5a and S1.5 suggest that the mean flight period date, μ, has advanced for all
species and broods, which is consistent with what is expected under climate change (Sparks
and Yates 1997; Roy and Sparks 2000). From Figures 5b and S1.6 we see that the length
of the flight period has generally increased, also in agreement with previous findings (Roy
and Sparks 2000). Table S2.1 suggests significant increases in σ for 5 out of 6 univoltine
species. The location of the fitted line for the Marbled White σk in Figure 5b is due to the
increase in sample size over time giving more weight to the later years. Figures S1.5 and
S1.6 show a small number of outliers which require further investigation.

With the exception of Green Hairstreak, for the six univoltine species there was no clear
relationship betweenμk and ρk (Figure S1.7). For Green Hairstreak, which emerges early in
the season, lower productivities are associated with an earlier flight period, which may lead
to declines if advances in phenology continue with changes in climate. For most of the five
bivoltine species, significant patterns between the mean flight period for each generation
and the associated productivity were not found (Figure S1.8). However for Brown Argus
and Green-veined White, productivity of the second generation was lower when the mean
flight period date of the second brood, μk,2, was advanced.

These results show that the dynamic models predict phenological changes consistent
with expected patterns. The dynamic models allow for improved estimates of phenology to
be studied in combination with demographic parameters, to reveal potential novel insights.
Changes in phenology may also be modelled using the mechanistic models, in order to
separate changes in emergence time from changes in survival.
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Figure 5. Annual estimates of a μk and b σk from model P1, which was fitted to estimate ρk , μk and σk across
sites for each year. Blue lines indicate fitting log-linear regressions on year for μ and σ , as in Table S2.1a) (Color
figure online).
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4. DISCUSSION

The dynamic model framework allows novel investigation of the drivers of fluctuations
in abundance and provides a basis that can be adapted to both the study species and research
aim.We have presented only a preliminary application. Themethods of Dennis et al. (2014),
which model data for each year separately, may be better suited for estimating indices of
abundances efficiently (see Table S2.1), whereas dynamic models provide additional infor-
mation of value for understanding demography. However, the agreement of the indices
obtained from the different methods provides confidence that the dynamic models are per-
forming correctly, and that for multivoltine species indices may be derived separately for
each brood.

For the majority of the sample species, higher overwinter productivity was associated
with cooler winters, which may act to reduce the impact of pathogens. Variability in lifespan
and first brood productivity of bivoltine species differed more between species. Given that
species have different life-histories, further research may look for trait-based variation, for
example overwintering stage: egg, larva, chrysalis or adult, all ofwhichmay be affectedmost
severely by different environmental factors. For example, Diamond et al. (2011) explored
relationships between changes in date of first appearance and species’ traits.

Further work is needed to explore the relevant covariates driving changes in produc-
tivity, survival and phenology. Spatial covariates such as habitat/land-cover may describe
additional variation in the parameters. Inclusion of local weather could identify the period
within the life-cycle for which weather has the most impact on the adult stage. Growing
degree-days may also be explored (Hodgson et al. 2011). In this study, covariates were
included additively on a logistic linear scale, whereas true relationships may be non-linear,
for example productivity/survival might be limited by extremes in weather. The models
could also be extended to model variation in productivity stochastically.

Alternatives to the Normal distribution for describing seasonal variation could be
explored, for example to describe skewness (Calabrese 2012). This study has only accounted
for species which are distinctly univoltine or bivoltine. A spline may be used to define com-
plex seasonal patterns (Dennis et al. 2014), and the models could be extended to allow more
than two broods each year. The models may be developed to accommodate variation in
voltinism, where the first generation contributes to both the second generation within the
same year and first generation the following year, with relevance for study of potential “lost
generations” (Dyck et al. 2015). The dynamic models may also be used to study species
which aestivate under hot summer conditions (Spieth et al. 2011; Grill et al. 2013).

The dynamic models produce realistic estimates of parameters relevant to phenology,
providing further validation of the models. Phenological studies have typically involved
measures such as mean first encounter, mean peak encounter and mean length of the flight
period (Roy and Sparks 2000; Diamond et al. 2014; Karlsson 2014), which may be driven
by observer behaviour. The improved estimates of phenology from dynamic models provide
the opportunity to study linkages between changes in phenology and changes in abundance
and productivity, for example phenological mismatch (Hindle et al. 2015).

Using a phenomenological model may be optimal in scenarios with limited data, but the
mechanistic model allows for additional insights by estimating survival. Spatio-temporal
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variation in the lifespans of butterflies has had limited attention, as have potential linkages
with other parameters, for example to explore how phenology affects survival, or whether
variation in survival can influence productivity.Using amechanisticmodel separates relevant
parameters, for example to determine whether an increase in flight period length is due to an
extended period of emergence, or increased lifespan. The model could be adapted to explore
synchrony in populations (Powney et al. 2010), either between sites of a given species or
across sites but between multiple species, by incorporating random effects (Lahoz-Monfort
et al. 2011, 2013), for example in the ρ parameter for productivity. Density dependence,
which has been highlighted for some butterflies (Nowicki et al. 2009), may be incorporated
here in productivity and/or survival by introducing a dependency on the relative abundance.
Additionally, allowing for spatial dependence of ρ and autocorrelation in abundance may
be advantageous (Johnson et al. 2012). Pagel et al. (2014) included spatially autocorrelated
random effects when modelling mean population density, but did not account for the within-
year variability in counts.

For some threatened, conservation-priority UK butterflies, such as Large Blue Phengaris
arion, Brown Hairstreak Thecla betulae and Marsh Fritillary Euphydryas aurinia, data are
available on other stages of the butterfly life-cycle, such as counts of caterpillars or eggs.
An attraction of the model framework proposed is the potential for the incorporation of data
from multiple stages of the life-cycle, which could aid the monitoring and conservation of
rarer species for which coverage from standard monitoring schemes can be limited.

The dynamic models may address the “lack of mechanistic understanding about factors
driving butterfly population dynamics” (Isaac et al. 2011). Future application will generate
hypotheses for further investigation, with the potential to illuminate features of butterfly
phenology and demography which are at present poorly understood.
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5. APPENDIX: CONCENTRATED LIKELIHOOD FOR
BIVOLTINE SPECIES

Using Eq. (4), the log-likelihood for site i is given, apart from an additive constant, by

�i = Log(Li ) =
T∑

j=1

[
− Ni,1,1

(
ai, j,1,1 + ρi,1,1ai, j,1,2

)

+ yi, j,1log
{

Ni,1,1
(
ai, j,1,1 + ρi,1,1ai, j,1,2

)}
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+
Y∑

k=2

{
−Ni,1,1

(
ai, j,k,1 + ρi,k,1ai, j,k,2

) k−1∏

m=1

2∏

b=1

ρi,m,b

+ yi, j,k log

(
Ni,1,1

(
ai, j,k,1 + ρi,k,1ai, j,k,2

) k−1∏

m=1

2∏

b=1

ρi,m,b

)}]
, (13)

where we have defined {ai, j,k,b} and {ρi,k,b}, for site i , visit j and brood b in year k in the
main paper. This gives

∂�

∂ Ni,1,1
=

T∑

j=1

[
− (

ai, j,1,1 + ρi,1,1ai, j,1,2
) + yi, j,1

Ni,1,1

+
Y∑

k=2

{
− (

ai, j,k,1 + ρi,k,1ai, j,k,2
) k−1∏

m=1

2∏

b=1

ρi,m,b + yi, j,k

Ni,1,1

}]
,

and equating to zero we find

Ni,1,1 =
T∑

j=1

∑Y
k=1 yi, j,k

ai, j,1,1 + ρi, j,1ai, j,1,2 + ∑Y
k=2

{(
ai, j,k,1 + ρi,m,1ai, j,k,2

) ∏k−1
m=1

∏2
b=1 ρi,m,b

} .

(14)

We note again how Ni,1,1 is aweighted sumover visits of totals at site i across years. As in the
univoltine case, we substitute the expressions for {Ni,1,1} from (14) into (13) and maximise
the overall concentrated likelihood with respect to parameters associated with ρ and a.
Estimation of {Ni,1,1} is obtained by substituting estimates of {ai, j,k,b} and {ρi,k,b} into (14).

This concentrated likelihood approach applies for both the phenomenological and mech-
anistic models for bivoltine species, with variation only in the specification of {ai, j,k,b}.
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