14 research outputs found

    Electron energy loss spectroscopy of novel oxide- and nitride-based nanostructured materials

    Get PDF

    Template-free inorganic synthesis of silica-based nanotubes and their self-assembly to mesocrystals

    Get PDF
    A novel synthesis approach for silica-based nanotubes (NTs) was discovered in the purely inorganic system containing the molecular compounds OP(NH2)3, SP(NH2)3 and SiCl4 in evacuated and sealed silica glass ampoules. Without any solvent or structure directing template the amorphous NTs self-organise to form orthogonally ordered, 3D hyperbranched mesocrystals, exhibiting an interesting material for nanofluidic device applications

    High-Resolution Spectroscopy of Bonding in a Novel BeP2N4 Compound

    Get PDF
    The recently discovered compound BeP2N4 that crystallizes in the phenakite-type structure has potential application as a high strength optoelectronic material. Therefore, it is important to analyze experimentally the electronic structure, which was done in the present work by monochromated electron energy-loss spectroscopy. The detection of Be is challenging due to its low atomic number and easy removal under electron bombardment. We were able to determine the bonding behavior and coordination of the individual atomic species including Be. This is evident from a good agreement between experimental electron energy-loss near-edge structures of the Be-K-, P-L2,3-, and N-K-edges and density functional theory calculations

    Direct Aminoalkylation of Arenes, Heteroarenes, and Alkenes via Ni-Catalyzed Negishi Cross-Coupling Reactions

    No full text
    A room-temperature Ni-catalyzed cross-coupling of aryl, heteroaryl, and alkenyl electrophiles with aminoalkylzinc bromides, readily available from the corresponding aminoalkyl chlorides via Grignard reagents, was developed. The reaction allows a convenient one-step preparation of various aminoalkyl products, including piperidine and tropane derivatives. Such functionalized amine moieties are widely present in various biologically active molecules. Aryl, heteroaryl, and alkenyl iodides, bromides, chlorides and triflates are suitable electrophiles. A short total synthesis of two natural products, (±)-galipinine and (±)-cusparine, is also reported

    Insight in the 3D morphology of silica-based nanotubes using electron microscopy

    No full text
    Amorphous silica-based nanotubes (SBNTs) were synthesized from phosphoryl triamide, OP(NH2)(3), thiophosphoryl triamide, SP(NH2)(3), and silicon tetrachloride, SiCl4, at different temperatures and with varying amount of the starting material SiCl4 using a recently developed template-free synthesis approach. Diameter and length of the SBNTs are tunable by varying the synthesis parameters. The 3D mesocrystals of the SBNTs were analyzed with focused ion beam sectioning and electron tomography in the transmission electron microscope showing the hollow tubular structure of the SBNTs. The reconstruction of a small SBNT assembly was achieved from a high-angle annular-dark field scanning transmission electron microscopy tilt series containing only thirteen images allowing analyzing beam sensitive material without altering the structure. The reconstruction revealed that the individual nanotubes are forming an interconnected array with an open channel structure. (C) 2016 Elsevier Ltd. All rights reserved

    Spin and valence dependence of iron partitioning in Earth’s deep mantle

    No full text
    International audienceWe performed laser-heated diamond anvil cell experiments combined with state-of-the-art electron microanalysis (focused ion beam and aberration-corrected transmission electron microscopy) to study the distribution and valence of iron in Earth's lower mantle as a function of depth and composition. Our data reconcile the apparently discrepant existing dataset, by clarifying the effects of spin (high/low) and valence (ferrous/ferric) states on iron partitioning in the deep mantle. In aluminum-bearing compositions relevant to Earth's mantle, iron concentration in silicates drops above 70 GPa before increasing up to 110 GPa with a minimum at 85 GPa; it then dramatically drops in the postperovskite stability field above 116 GPa. This compositional variation should strengthen the lowermost mantle between 1,800 km depth and 2,000 km depth, and weaken it between 2,000 km depth and the D" layer. The succession of layers could dynamically decouple the mantle above 2,000 km from the lowermost mantle, and provide a rheological basis for the stabilization and nonentrainment of large low-shear-velocity provinces below that depth

    A large planetary body inferred from diamond inclusions in a ureilite meteorite

    No full text
    Ureilites are a type of meteorite that are believed to be derived from a parent body that was impacted in the early solar system. Here, the authors analyse inclusions within diamonds from a ureilite meteorite and find that they must have formed at above 20 GPa suggesting the parent body was Mercury- to Mars-sized

    Functional Engineering of Perovskite Nanosheets: Impact of Lead Substitution on Exfoliation in the Solid Solution RbCa2-xPbxNb3O10

    No full text
    Tuning the chemical composition and structure for targeted functionality in two-dimensional (2D) nanosheets has become a major objective in the rapidly growing area of 2D materials. In the context of photocatalysis, both miniaturization and extending the light absorption of UV active photocatalysts are major assets. Here, we investigate the solid solution between two photocatalytic systems known from literature to evolve H-2 from water/methanol under UV-RbCa2Nb3O10 (E-g = 3.7 eV) -and visible light irradiation - RbPb2Nb3O10 (E-g = 3.0 eV) - by synthesizing hypothetical RbCa2-xPbxNb3O10. While the calcium niobate can easily be exfoliated into individual nanosheets via cation-proton exchange and subsequent treatment with tetra-n-butyl-ammonium hydroxide (TBAOH), the lead niobate barely yields nano-sheets. Spectroscopic and microscopic analysis suggest that this is caused by volatilization of Pb during synthesis, leading to a local 3D linkage of RbPb2Nb3O10 perovskite units with Pb deficient units. On the one hand, this linkage progressively prevents exfoliation along with an increasing Pb content. On the other hand, introducing Pb into the perovskite blocks successively leads to bandgap narrowing, thus gradually enhancing the light harvesting capability of the solid solution. Finding a compromise between this narrowing of the bandgap and the possibility of exfoliation, visible light sensitized nanosheets can be engineered in good yield for an initial molar ratio of Ca:Pb >= 1:1
    corecore