13 research outputs found

    Designing of composite reticulated shell mounting for reflectors of satellite antennas enhanced ribs

    Get PDF
    The growth in the number of communication satellites and the increase in antenna signal frequencies places higher demands on the accuracy and mass of reflectors. The accuracy of the reflector depends not only on its structure and materials but is also influenced by its mounting. In this paper, based on the rib-reinforced reflector designed by Bauman Moscow State Technical University, the effect of the reticulated shell mountings with different numbers of interlacing ribs in a shape of a circular truncated cone working in the geosynchronous orbit on the thermal deformation of the reflective surface is investigated by simulations using Siemens NX software. It is concluded that the desired deformation can be obtained when the number of t interlacing is 30. On thermal deformation, the effects of two weight reduction methods, namely reducing the width and thickness of ribs, were also investigated simultaneously. It is shown that reducing the thickness of ribs can achieve the target of mass reduction under the condition of ensuring the accuracy of the reflective surface. It is provided the basis for engineering calculations for practice

    Technology of Using Test Control of Students of the College (On the Example of the "Electric Gas Welder" Profession)

    Full text link
    Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ тСорСтичСский Π°Π½Π°Π»ΠΈΠ· Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈ тСстового контроля Π·Π½Π°Π½ΠΈΠΉ ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ БПО. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ использованию тСстирования для ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ‚Π΅ΠΊΡƒΡ‰Π΅Π³ΠΎ контроля Π·Π½Π°Π½ΠΈΠΉ ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ практичСского использования тСстов ΠΏΡ€ΠΈ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΏΠΎ профСссии «ГазоэлСктросварщик».This article provides a theoretical analysis for the technology of test control of knowledge of students of open source software. Particular attention is paid to the use of testing to assess the current control of students’ knowledge. An example of the practical use of tests in training in the profession of Β«Gas electric welderΒ» is given

    Observation Of Very High Energy Cosmic-ray Families In Emulsion Chambers At High Mountain Altitudes (i)

    Get PDF
    Characteristics of cosmic-ray hadronic interactions in the 1015 - 1017 eV range are studied by observing a total of 429 cosmic-ray families of visible energy greater than 100 TeV found in emulsion chamber experiments at high mountain altitudes, Chacaltaya (5200 m above sea level) and the Pamirs (4300 m above sea level). Extensive comparisons were made with simulated families based on models so far proposed, concentrating on the relation between the observed family flux and the behaviour of high-energy showers in the families, hadronic and electromagnetic components. It is concluded that there must be global change in characteristics of hadronic interactions at around 1016 eV deviating from thise known in the accelerator energy range, specially in the forwardmost angular region of the collision. A detailed study of a new shower phenomenon of small-pT particle emissions, pT being of the order of 10 MeV/c, is carried out and its relation to the origin of huge "halo" phenomena associated with extremely high energy families is discussed as one of the possibilities. General characteristics of such super-families are surveyed. Β© 1992.3702365431Borisov, (1981) Nucl. Phys., 191 BBaybrina, (1984) Trudy FIAN 154, p. 1. , [in Russian], Nauka, MoscowLattes, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151Hasegawa, ICR-Report-151-87-5 (1987) presented at FNAL CDF Seminar, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Yamashita, Ohsawa, Chinellato, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 30. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 1. , Tokyo, 1984Baradzei, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 136. , Tokyo, 1984Yamashita, (1985) J. Phys. Soc. Jpn., 54, p. 529Bolisov, (1984) Proc. 3rd Int. Symp. on Cosmic rays and Particle Physics, p. 248. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of TokyoTamada, Tomaszewski, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 324. , Lodz, 1988, Inst. for Cosmic Ray Research, Univ. of Tokyo, PolandHasegawa, (1989) ICR-Report-197-89-14, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Okamoto, Shibata, (1987) Nucl. Instrum. Methods, 257 A, p. 155Zhdanov, (1980) FIAN preprint no. 45, , Lebedev Physical Institute, MoscowSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, 76, p. 111Nikolsky, (1975) Izv. Akad. Nauk. USSR Ser. Fis., 39, p. 1160Burner, Energy spectra of cosmic rays above 1 TeV per nucleon (1990) The Astrophysical Journal, 349, p. 25Takahashi, (1990) 6th Int. Symp. on Very High Energy Cosmic-ray Interactions, , Tarbes, FranceRen, (1988) Phys. Rev., 38 D, p. 1404Alner, The UA5 high energy simulation program (1987) Nuclear Physics B, 291 B, p. 445Bozzo, Measurement of the proton-antiproton total and elastic cross sections at the CERN SPS collider (1984) Physics Letters B, 147 B, p. 392Wrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 56. , NASA Conference Publication, Washington, D.CWrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 328. , NASA Conference Publication, Washington, D.CMukhamedshin, (1984) Trudy FIAN, 154, p. 142. , Nauka, Moscow, [in Russian]Dunaevsky, Pluta, Slavatinsky, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 143. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandKaidalov, Ter-Martirosyan, (1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 141. , Nauka, MoscowShabelsky, (1985) preprints LNPI-1113Shabelsky, (1986) preprints LNPI-1224, , Leningrad [in Russian]Hillas, (1979) Proc. 16th Int. Cosmic-Ray Conf., Kyoto, 6, p. 13. , Inst. for Cosmic Ray Research, Univ. of TokyoBorisov, (1987) Phys. Lett., 190 B, p. 226Hasegawa, Tamada, (1990) 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, FranceSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, p. 111Ren, (1988) Phys. Rev., 38 D, p. 1404Dynaevsky, Zimin, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interaction, p. 93. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandDynaevsky, (1990) Proc. 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, France(1989) FIAN preprint no. 208, , Lebedev Physical Institute, Moscow(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 8, p. 259. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaHasegawa, (1990) ICR-Report-216-90-9, , Inst. for Cosmic-Ray Research, Univ. of TokyoTamada, (1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaTamada, (1990) ICR-Report-216-90-9(1981) Proc. 17th Int. Cosmic-Ray Conf., Paris, 5, p. 291(1990) Proc. Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 267. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1989) Inst. Nucl. Phys. 89-67/144, , preprint, Inst. Nucl. Phys., Moscow State UnivSmilnova, (1988) Proc. 5th Int. Sym. on Very High Energy Cosmic-Ray Interactions, p. 42. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandGoulianos, (1986) Proc. Workshop of Particle Simulation at High Energies, , University of Wisconsin, Madison, USAIvanenko, (1983) Proc. 18th Int. Cosmic-Ray Conf., Bangalore, 1983, 5, p. 274. , Tata Inst. Fundamental Research, Bombay, IndiaIvanenko, (1984) Proc. Int. Symp. on Cosmic-Rays and Particle Physics, p. 101. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1988) 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 180. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, Poland(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 251. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1991) Izv. AN USSR No. 4, , to be publishedNikolsky, Shaulov, Cherdyntseva, (1990) FIAN preprint no. 140, , Lebedev Physical Institute, Moscow, [in Russian](1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 326. , Nauka, Mosco

    Designing of composite reticulated shell mounting for reflectors of satellite antennas enhanced ribs

    No full text
    The growth in the number of communication satellites and the increase in antenna signal frequencies places higher demands on the accuracy and mass of reflectors. The accuracy of the reflector depends not only on its structure and materials but is also influenced by its mounting. In this paper, based on the rib-reinforced reflector designed by Bauman Moscow State Technical University, the effect of the reticulated shell mountings with different numbers of interlacing ribs in a shape of a circular truncated cone working in the geosynchronous orbit on the thermal deformation of the reflective surface is investigated by simulations using Siemens NX software. It is concluded that the desired deformation can be obtained when the number of t interlacing is 30. On thermal deformation, the effects of two weight reduction methods, namely reducing the width and thickness of ribs, were also investigated simultaneously. It is shown that reducing the thickness of ribs can achieve the target of mass reduction under the condition of ensuring the accuracy of the reflective surface. It is provided the basis for engineering calculations for practice

    Hypogonadism and its treatment following ischaemic stroke in men with type 2 diabetes mellitus

    No full text
    Premature mortality in Russia is a major socio-economic problem, especially from acute cerebrovascular diseases which constitute 21.4% of the total mortality and is a considerable contributor to chronic disability. Risk of vascular catastrophe is higher in males than females, thought, in part, due to anti-atherosclerotic effects of oestrogens in females whilst an associated age-related deficiency of testosterone is observed in men. Clinical symptoms such as high blood pressure, changes in lipid profile, insulin resistance, obesity, and blood coagulation factors often accompany declining testosterone in males and reduced total testosterone is considered a cardiovascular risk factor. In the present study, the prevalence of hypogonadism in men who had suffered ischaemic stroke was evaluated along with the efficacy of testosterone undecanoate injections (TU) in patients with testosterone deficiency and type-2 diabetes (T2DM) in the acute phase of hemispheric ischaemic stroke. Hypogonadism was present in 66.3% of patients with ischaemic stroke, 50% with T2DM, and 26.3% without T2DM, respectively. TU treatment, at both the 2 and 5-year observation points, demonstrated significant improvements in biochemical, physical, and mental parameters. This supports that testosterone deficiency is a contributing factor in ischaemic events and that long-term testosterone therapy could play an important role in patient recovery
    corecore