14 research outputs found

    Towards Accurate Partial Volume Correction - Perturbation for SPECT Resolution Estimation

    Get PDF
    The accuracy of quantitative SPECT imaging is limited by the Partial Volume Effect as a result of the relatively poor spatial resolution. There is currently no consensus on the optimal Partial Volume Correction (PVC) algorithm in the application of SPECT oncology imaging. Several promising candidates require information on the reconstructed resolution - usually in the form of the Point Spread Function (PSF). A particular challenge that SPECT poses for PVC is that the resolution is known to vary with position in the field-of-view, as well as with activity distribution and reconstruction method. In this work, we assessed the potential benefit of using perturbation to measure case-specific resolution for PVC. A small point source was used to measure the resolution in phantoms designed to replicate the issues encountered in oncology imaging, including anthropomorphic phantoms which had not previously been examined in perturbation applications. Results demonstrate that, provided that a sufficient number of iterations is used for image reconstruction, perturbation can be used to measure a case-specific PSF. When PVC is applied with this case-specific PSF, quantitative accuracy is improved compared with no correction or applying PVC with an inappropriate PSF

    Characterisation of a CZT detector for dosimetry of molecular radiotherapy

    Get PDF
    A pixelated cadmium zinc telluride (CZT) detector has been characterised for the purpose of developing a quantitative single photon emission computed tomography (SPECT) system for dosimetry of molecular radiotherapy (MRT). This is the aim of the Dosimetric Imaging with CZT (DEPICT) project, which is a collaboration between the University of Liverpool, The Royal Marsden Hospital, The Royal Liverpool and Broadgreen University Hospital, and the commercial partner Kromek. CZT is a direct band gap semiconductor with superior energy resolution and stopping power compared to scintillator detectors used in current SPECT systems. The inherent detector properties have been investigated and operational parameters such as bias voltage and peaking time have been selected to optimise the performance of the system. Good energy resolution is required to discriminate γ-rays that are scattered as they are emitted from the body and within the collimator, and high photon throughput is essential due to the high activities of isotopes administered in MRT. The system has an average measured electronic noise of 3.31 keV full width at half maximum (FWHM), determined through the use of an internal pulser. The energy response of the system was measured across the energy region of interest 59.5 keV to 364.5 keV and found to be linear. The reverse bias voltage and peaking time producing the optimum FWHM and maximum photon throughput were 600 V and 0.5 μs respectively. The average dead time of the system was measured as 4.84 μs and charge sharing was quantified to be 0.71 % at 59.5 keV . A pixel sensitivity calibration map was created and planar images of the medical imaging isotopes 99mTc and 123I were acquired by coupling the device to a prototype collimator, thereby demonstrating the suitability of the detector for the DEPICT project

    Individualized 131I-mIBG therapy in the management of refractory and relapsed neuroblastoma.

    Get PDF
    Objective Iodine-131-labelled meta-iodobenzylguanidine (I-mIBG) therapy is an established treatment modality for relapsed/refractory neuroblastoma, most frequently administered according to fixed or weight-based criteria. We evaluate response and toxicity following a dosimetry-based, individualized approach.Materials and methods A review of 44 treatments in 25 patients treated with I-mIBG therapy was performed. Patients received I-mIBG therapy following relapse (n=9), in refractory disease (n=12), or with surgically unresectable disease despite conventional treatment (n=4). Treatment schedule (including mIBG dose and number of administrations) was individualized according to the clinical status of the patient and dosimetry data from either a tracer study or previous administrations. Three-dimensional tumour dosimetry was also performed for eight patients.Results The mean administered activity was 11089±7222 MBq and the mean whole-body dose for a single administration was 1.79±0.57 Gy. Tumour-absorbed doses varied considerably (3.70±3.37 mGy/MBq). CTCAE grade 3/4 neutropenia was documented following 82% treatments and grade 3/4 thrombocytopenia following 71% treatments. Further acute toxicity was found in 49% of patients. All acute toxicities resolved with appropriate therapy. The overall response rate was 58% (complete or partial response), with a further 29% of patients having stable disease.Conclusion A highly personalized approach combining patient-specific dosimetry and clinical judgement enables delivery of high activities that can be tolerated by patients, particularly with stem cell support. We report excellent response rates and acceptable toxicity following individualized I-mIBG therapy

    New Isomers in the Full Seniority Scheme of Neutron-Rich Lead Isotopes: The Role of Effective Three-Body Forces

    Get PDF
    The neutron-rich lead isotopes, up to Pb-216, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond Pb-208.INFN, ItalyINFN, ItalyMICINN, Spain [AIC10-D-000568]MICINN, SpainGeneralitat Valenciana, SpainGeneralitat Valenciana, Spain [FPA2008-06419, PROMETEO/2010/101]UK STFCUK STFCAWE plcAWE plcDFGDFG [EXC 153

    The impact of radiobiologically-informed dose prescription on the clinical benefit of yttrium-90 SIRT in colorectal cancer patients

    No full text
    The purpose of this study was to establish the dose-response relationship of selective internal radiation therapy (SIRT) in patients with metastatic colorectal cancer (mCRC), when informed by radiobiological sensitivity parameters derived from mCRC cell lines exposed to yttrium-90 (90Y). Methods: 23 mCRC patients with liver metastases refractory to chemotherapy were included. 90Y bremsstrahlung SPECT images were transformed into dose maps assuming the local dose deposition method. Baseline and follow-up CT scans were segmented to derive liver and tumor volumes. Mean, median, and D70 (minimum dose to 70% of tumor volume) values determined from dose maps were correlated with change in tumor volume and vRECIST response using linear and logistic regression, respectively. Radiosensitivity parameters determined by clonogenic assays of mCRC cell lines HT-29 and DLD-1 after exposure to 90Y or external beam radiotherapy (EBRT; 6MV photons) were used in biological effective dose (BED) calculations. Results: Mean administered radioactivity was 1469±428 MBq (847-2185 MBq), achieving a mean radiation absorbed tumor dose of 35.5±9.4 Gy and mean normal liver dose of 26.4±6.8 Gy. A 1.0 Gy increase in mean, median, and D70 absorbed dose was associated with reduction in tumor volume of 1.8%, 1.8%, and 1.5%, respectively, and increased probability of vRECIST response (odds ratio: 1.09, 1.09, and 1.10 respectively). Threshold mean, median and D70 doses for response were 48.3, 48.8, and 41.8 Gy respectively. EBRT-equivalent BEDs for 90Y are up to 50% smaller than those calculated by applying protraction-corrected radiobiological parameters derived from EBRT alone. Conclusion: Dosimetric studies have assumed equivalence between 90Y SIRT and EBRT, leading to inflation of BED for SIRT and possible under-treatment. Radiobiological parameters for 90Y were applied to a BED model, providing a calculation method that has the potential to improve assessment of tumor control.</p

    Multiple β - Decaying states in 194Re: Shape evolution in neutron-rich osmium isotopes

    No full text
    decays from heavy, neutron-rich nuclei with A∼190 have been investigated following their production via the relativistic projectile fragmentation of an E/A=1 GeV 208Pb primary beam on a ∼2.5 g/cm2 9Be target. The reaction products were separated and identified using the GSI FRagment Separator (FRS) and stopped in the RISING active stopper. γ decays were observed and correlated with these secondary ions on an event-by-event basis such that γ-ray transitions following from both internal (isomeric) and β decays were recorded. A number of discrete, β-delayed γ-ray transitions associated with β decays from 194Re to excited states in 194Os have been observed, including previously reported decays from the yrast Iπ=(6+) state. Three previously unreported γ-ray transitions with energies 194, 349, and 554 keV are also identified; these transitions are associated with decays from higher spin states in 194Os. The results of these investigations are compared with theoretical predictions from Nilsson multi-quasiparticle (MQP) calculations. Based on lifetime measurements and the observed feeding pattern to states in 194Os, it is concluded that there are three β−-decaying states in 194Re

    The population of metastable states as a probe of relativistic-energy fragmentation reactions

    No full text
    Isomeric ratios have been measured for high-spin states in Po84198,200,206,208, At85208,209,210,211, Rn86210,211,212,213,214, Fr87208,211,212,213,214, Ra88210,211,212,214,215, and Ac89215 following the projectile fragmentation of a 1 AGeV U beam by a Be target at GSI Helmholtzzentrum für Schwerionenforschung. The fragments were separated in the fragment separator (FRS) and identified by means of energy loss and time-of-flight techniques. They were brought to rest at the centre of the RISING gamma-ray detector array and intensities of gamma rays emitted in the decay of isomeric states with half-lives between 100 ns and 40 μs and spin values up to 55/2ℏ were used to obtain the corresponding isomeric ratios. The data are compared to theoretical isomeric ratios calculated in the framework of the abrasion-ablation model. Large experimental enhancements are obtained for high-spin isomers in comparison to expected values. © 2013 Elsevier B.V
    corecore