140 research outputs found

    Electrochemical characterization of nanoporous nickel oxide thin films spray-deposited onto indium-doped tin oxide for solar conversion scopes

    Get PDF
    Nonstoichiometric nickel oxide (NiOx) has been deposited as thin film utilizing indium-doped tin oxide as transparent and electrically conductive substrate. Spray deposition of a suspension of nanoparticles in alcoholic medium allowed the preparation of uniform coatings. Sintering of the coatings was conducted at temperatures below 500°C for few minutes. This scalable procedure allowed the attainment of films with mesoporous morphology and reticulated structure. The electrochemical characterization showed that electrodes possess large surface area (about 1000 times larger than their geometrical area). Due to the openness of the morphology, the underlying conductive substrate can be contacted by the electrolyte and undergo redox processes within the potential range in which is electroactive. This requires careful control of the conditions of polarization in order to prevent the simultaneous occurrence of reduction/oxidation processes in both components of the multilayered electrode. The combination of the open structure with optical transparency and elevated electroactivity in organic electrolytes motivated us to analyze the potential of the spray-deposited films as semiconducting cathodes of dye-sensitized solar cells of p-type when erythrosine B was the sensitizer

    Nickel oxide photocathodes prepared using rapid discharge sintering for p-type dye-sensitized solar cells

    Get PDF
    This paper compares the photoelectrochemical performances of nickel oxide (NiO) thin films processed using two different sintering procedures: rapid discharge sintering (RDS) and conventional furnace sintering (CS). Prior to sintering, NiO nanoparticles were sprayed onto substrates to form loosely adherent nanoparticulate coatings. After RDS and furnace sintering the resultant NiO coatings were sensitized with erythrosine B dye and corresponding p-type dyesensitized solar cells were fabricated and characterized. NiO electrodes fabricated using the RDS technique exhibited a fourfold enhancement in electroactivity compared to CS electrodes. A possible explanation is the smaller sintered grain size and more open mesoporous structure achieved using the microwave plasma treatments

    Plasma Processing for Tailoring the Surface Properties of Polymers

    Get PDF
    This chapter details how plasma treatments can be used to tailor the wettability of polymers. A plasma is an excited gas, and exposure of a polymer to a plasma discharge generally results in an enhancement in surface energy and associated with this is an increase in wettability. The effect however can be short lived due to hydrophobic recovery. In this review the use of both low and atmospheric plasmas for the activation of polymers will be discussed, as will the use of these plasmas for the deposition of plasma polymerised coatings. The latter can be used to produce polymer surfaces with tailored functionalities, thus achieving stable water contact angles ranging from superhydrophilic to superhydrophobic, as required

    Microwave Plasmas as a Processing Tool for Tailoring the Surface Properties of Ceramic Coatings

    Get PDF
    This chapter reviews the use of low pressure microwave plasmas as a processing technology for both sintering and controlling the surface chemistry of porous ceramic coatings. A particular advantage of microwave processing is its ability to penetrate the surface of the workpiece; enabling rapid volumetric heating and thus reducing the need for external heat sources. The microwave plasma treatments have the ability to sinter materials in minutes rather than the hours taken using conventional furnace processing. This study provides examples of the use of these plasmas to sinter both nickel and titanium nanoparticles. These are used in the fabrication of electrodes for use in dye sensitized solar cells. Further applications of the microwave plasma treatments investigated is for their use in heat treatment to control crystalline phase transitions, as well as a rapid technique to oxidize metal surfaces

    Limits on the use of cobalt sulfide as anode of p-type dye-sensitized solar cells

    Get PDF
    Thin films of cobalt sulfide (CoS) of thickness l < 10m have been employed as anodes of p-type dye-sensitized solar cells (p-DSCs) when P1-sensitized nickel oxide (NiO) was the photoactive cathode and /I - constituted the redox mediator. In the role of counter electrode for p-DSCs, CoS was preferred over traditional platinized fluorine-doped indium oxide (Pt-FTO) due to the lower cost of the starting materials (Co salts) and the easier procedure of deposition onto large area substrates. The latter process was carried out via direct precipitation of CoS from aqueous solutions. The photoconversion efficiency (η) of the corresponding device was 0.07%. This value is about 35% less than the efficiency that is obtained with the analogous p-DSC employing the Pt-FTO anode (η = 0.11). Unlike p-DSCs based on Pt-FTO anodes, the photoelectrochemical cells employing CoS electrodes showed that this anodic material was not able to sustain the photocurrent densities generated by P1-sensitized NiO at a given photopotential. Illumination of the p-DSCs with CoS anodes and P1-sensitized NiO cathodes actually induced the reverse bias of the photoelectrochemical cell with CoS behaving like a p-type semiconductor with no degeneracy. © 2017 IOP Publishing Ltd

    Laser machined macro and micro structures on glass for enhanced light trapping in solar cells

    Get PDF
    In order to increase the efficiency of solar cell modules it is necessary to make the optimum use of light incident upon them. Much research has been done on improving light absorption through front surface texturisation and light trapping schemes. Laser light is commonly used in industry for various applications including marking and texturisation. By controlling laser parameters, it is possible to tailor macro and micro structures in most materials. The CO2 laser used in this investigation emits radiation at 10.6 μm with the ability to pulse in the micro-second range. The laser was used to ablate grooved textures in the fused quartz material, used in this study as the light trapping medium, following which an analysis of the effects of the laser parameters on the texture geometry and surface morphology was performed through a combination of cross sectioning and scanning electron microscopy. Transmission through the textured glass was improved for most samples after acid etching. The light trapping effects of the best performing textures were analysed by investigating the effects on a silicon solar cell’s performance at varying angles of incidence. Results indicated a significant increase in light trapping when light was incident at acute angles. For an angle of incidence of 10◦ a relative increase in efficiency of up to 51 % was observed

    Application of in situ process monitoring to optimise laser parameters during laser powder bed fusion printing of Ti-6Al-4V parts with overhang structures

    Get PDF
    Enhanced levels of alloy print defects such as porosity are associated with the printing of overhang structures by laser powder bed fusion (L-PBF). This study compared the microstructure and porosity of Ti-6Al-4V overhang structures, with that observed for the bulk alloy. It was observed in the region around the overhang structure that the microstructure exhibited larger grain sizes and was less homogenous, compared to the that obtained within the bulk alloy. An increased level of porosity of up to 0.08% was also observed in the overhang print alloy, compared with the corresponding < 0.02% in the alloy bulk. It is hypothesised that these microstructural changes are associated with the excess heat generated in the overhang region, due to the decreased thermal conductivity of the powder immediately below the print layers, compared with solid alloy. During L-PBF alloy printing, in situ process monitoring of the melt pool emissions was obtained in the near-infrared range and correlated with the properties of the printed parts. This in-process data was used to assist in selecting optimal laser processing conditions, in order to help prevent melt pool overheating at the overhang. By systematically controlling the laser energy during the printing of the first fifteen layers over the overhang structure, the level of porosity was reduced, to the < 0.02% level of the bulk alloy. There was also an associated reduction in the roughness (Ra) of the overhang itself, with its Ra decreasing from 62.4 ± 7.3 to 7.5 ± 1.9 µm.Science Foundation IrelandSMART Eureka project APEM-A

    Application of the STRAY statistical learning algorithm for the evaluation of in-situ process monitoring data during L-PBF additive manufacturing.

    Get PDF
    This study investigates the use of a statistical anomaly detection method to analyse in-situ process monitoring data obtained during the Laser Powder Bed Fusion of Ti-6Al-4V parts. The printing study was carried out on a Renishaw 500M Laser-Powder Bed Fusion system. A photo diodebased system called InfiniAM was used to monitor the melt-pool emissions along with the operational behaviour of the laser during the build process. The analysis of the in-process data was carried out using an unsupervised machine learning approach called the Search and TRace AnomalY algorithm. The ability to detect defects during the manufacturing of metal alloy parts was demonstrated

    The influence of a large build area on the microstructure and mechanical properties of PBF-LB Ti-6Al-4 V alloy

    Get PDF
    This study investigated the print homogeneity of Ti-6Al-4 V alloy parts, when printed over a large build area of 250 × 250 × 170 mm3, using a production scale laser powder bed additive manufacturing system. The effect of part location across this large build area was investigated based on printed part porosity, microstructure, hardness, and tensile properties. In addition, a Hot Isostatic Pressing (HIP) treatment was carried out on the as-built parts, to evaluate its impact on the material properties. A small increase in part porosity from 0.01 to 0.09%, was observed with increasing distance from the argon gas flow inlet, which was located on one side of the build plate, during printing. This effect, which was found to be independent of height from the build plate, is likely to be associated with enhanced levels of condensate or spatter residue, being deposited at distances, further from the gas flow. Despite small differences in porosity, no significant differences were obtained for microstructural features such as prior β grain, α lath thickness, and phase fraction, over the entire build area. Due to this, mechanical performances such as hardness and tensile strengths were also found to be homogenous across the build area. Additionally, it was also observed based on the lattice constants that partial in-situ decomposition of α′→α+β phases occurred during printing. Post HIP treatment result showed a decrease of 7 and 6%, in the yield strength (YS) and ultimate tensile strength (UTS), respectively, which was associated with a coarsening of α lath widths. The potential of the laser powder bed system for large area printing was successfully demonstrated based on the homogenous microstructure and mechanical properties of the Ti-6Al-4 V alloy parts
    corecore