18,179 research outputs found

    Identifying Native Applications with High Assurance

    Get PDF
    The work described in this paper investigates the problem of identifying and deterring stealthy malicious processes on a host. We point out the lack of strong application iden- tication in main stream operating systems. We solve the application identication problem by proposing a novel iden- tication model in which user-level applications are required to present identication proofs at run time to be authenti- cated by the kernel using an embedded secret key. The se- cret key of an application is registered with a trusted kernel using a key registrar and is used to uniquely authenticate and authorize the application. We present a protocol for secure authentication of applications. Additionally, we de- velop a system call monitoring architecture that uses our model to verify the identity of applications when making critical system calls. Our system call monitoring can be integrated with existing policy specication frameworks to enforce application-level access rights. We implement and evaluate a prototype of our monitoring architecture in Linux as device drivers with nearly no modication of the ker- nel. The results from our extensive performance evaluation shows that our prototype incurs low overhead, indicating the feasibility of our model

    Mode engineering with a one-dimensional superconducting metamaterial

    Full text link
    We propose a way to control the Josephson energy of a single Josephson junction embedded in one- dimensional superconducting metamaterial: an inhomogeneous superconducting loop, made out of a superconducting nanowire or a chain of Josephson junctions. The Josephson energy is renormalized by the electromagnetic modes propagating along the loop. We study the behaviour of the modes as well as of their frequency spectrum when the capacitance and the inductance along the loop are spatially modulated. We show that, depending on the amplitude of the modulation, the renormalized Josephson energy is either larger or smaller than the one found for a homogeneous loop. Using typical experimental parameters for Josepshon junction chains and superconducting nanowires, we conclude that this mode-engineering can be achieved with currently available metamaterials

    Fatigue delamination behaviour of unidirectional carbon fibre/epoxy laminates reinforced by Z-Fiber® pinnin

    Get PDF
    -Pin reinforced carbon-fibre epoxy laminates were tested under Mode I and Mode II conditions, both quasi-statically and in fatigue. Test procedures were adapted from existing standard or pre-standard tests. Samples containing 2% and 4% areal densities of carbon-fibre Z-pins (0.28mm diameter) were compared with unpinned laminates. Quasi-static tests under displacement control yielded a dramatic increase of the apparent delamination resistance. Specimens with 2% pin density failed in Mode I at loads 170N, equivalent to an apparent GIC of 2kJ/m2. Fatigue testing under load control showed that the presence of the through- thickness reinforcement slowed down fatigue delamination propagation

    Density-matrix functionals for pairing in mesoscopic superconductors

    Full text link
    A functional theory based on single-particle occupation numbers is developed for pairing. This functional, that generalizes the BCS approach, directly incorporates corrections due to particle number conservation. The functional is benchmarked with the pairing Hamiltonian and reproduces perfectly the energy for any particle number and coupling.Comment: 4 pages, 4 figures, revised versio

    Theory of coherent quantum phase-slips in Josephson junction chains with periodic spatial modulations

    Full text link
    We study coherent quantum phase-slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Sch\"on modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude

    Non-equilibrium umbrella sampling applied to force spectroscopy of soft matter

    Get PDF
    Physical systems often respond on a timescale which is longer than that of the measurement. This is particularly true in soft matter where direct experimental measurement, for example in force spectroscopy, drives the soft system out of equilibrium and provides a non-equilibrium measure. Here we demonstrate experimentally for the first time that equilibrium physical quantities (such as the mean square displacement) can be obtained from non-equilibrium measurements via umbrella sampling. Our model experimental system is a bead fluctuating in a time-varying optical trap. We also show this for simulated force spectroscopy on a complex soft molecule--a piston-rotaxane

    A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructures and large-sized finite element models

    Get PDF
    International audienceThe wave finite element (WFE) method is investigated to describe the dynamic behavior of periodic structures like those composed of arbitrary-shaped substruc-tures along a certain straight direction. Emphasis is placed on the analysis of non-academic substructures that are described by means of large-sized finite element (FE) models. A generalized eigenproblem based on the so-called S + S −1 transformation is proposed for accurately computing the wave modes which travel in right and left directions along those periodic structures. Besides, a model reduction technique is proposed which involves partitioning a whole periodic structure into one central structure surrounded by two extra substructures. In doing so, a few wave modes are only required for modeling the central periodic structure. An error indicator is also proposed to determine in an a priori process the number of those wave modes that need to be considered. Their computation hence follows by considering the Lanczos method, which can be achieved in a very fast way. Numerical experiments are carried out to highlight the relevance of the proposed reduction technique. A comprehensive validation of the technique is performed on a 2D periodic structure. Also, its efficiency in terms of CPU time savings is highlighted regarding a 3D periodic structure that exhibits substructures with large-sized FE models
    corecore