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Abstract

The wave finite element (WFE) method is investigated to describe the dynamic

behavior of periodic structures like those composed of arbitrary-shaped substruc-

tures along a certain straight direction. Emphasis is placed on the analysis of non-

academic substructures that are described by means of large-sized finite element

(FE) models. A generalized eigenproblem based on the so-called S + S−1 trans-

formation is proposed for accurately computing the wave modes which travel in

right and left directions along those periodic structures. Besides, a model reduc-

tion technique is proposed which involves partitioning a whole periodic structure

into one central structure surrounded by two extra substructures. In doing so, a few

wave modes are only required for modeling the central periodic structure. An error

indicator is also proposed to determine in an a priori process the number of those

wave modes that need to be considered. Their computation hence follows by con-

sidering the Lanczos method, which can be achieved in a very fast way. Numerical
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experiments are carried out to highlight the relevance of the proposed reduction

technique. A comprehensive validation of the technique is performed on a 2D pe-

riodic structure. Also, its efficiency in terms of CPU time savings is highlighted

regarding a 3D periodic structure that exhibits substructures with large-sized FE

models.

Keywords: Wave finite element method, periodic structures, model reduction,

structural dynamics.

1. Introduction

Predicting the dynamic behavior of complex periodic structures like those en-

countered in engineering applications, by means of accurate and fast numerical

tools, constitutes an open industrial challenge. Popular examples of those peri-

odic structures are aircraft fuselages, chassis frames, phononic crystals, and so

on. In many cases, these systems are made up of arbitrary-shaped substructures

which are identical to each other and are assembled along one straight direction.

Also, those substructures are usually described by means of large-sized FE models,

which makes the conventional FE method and related component mode synthesis

(CMS) techniques quite inefficient for assessing the dynamic behavior of a whole

periodic structure at a reasonable computational cost. The need to reduce the CPU

times involved by the computation of the forced response of this kind of periodic

structures relates the motivation of the present paper. This issue is addressed here

by means of the wave finite element (WFE) combined with an original model re-

duction technique.

Originally, the WFE method has been initiated to describe the wave propaga-

tion along one-dimensional periodic elastic systems [1, 2]. Later on, it has been
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applied to multi-layered waveguides [3, 4], fluid-filled pipes [5, 6] and truss beams

[7]. The computation of the forced response of bounded elastic waveguides —

i.e., periodic structures which are made up of straight substructures — subject to

Neumann and Dirichlet boundary conditions (BCs) has been addressed in several

ways using the WFE method [8, 9, 10, 11]. The procedure consists in assessing the

kinematic and mechanical fields of a structure by means of numerical wave modes

traveling in right and left directions. Their computation follows by considering a

generalized eigenproblem that is expressed from the mass and stiffness matrices of

a particular substructure. Besides, the study of coupled systems involving elastic

waveguides and elastic junctions has been proposed in [12], while that of truly pe-

riodic structures — i.e., structures composed of complex substructures like those

encountered in engineering applications — has been proposed in [13]. Actually,

there exist two main WFE-based strategies to compute the forced response of pe-

riodic structures. These are labeled as dynamic stiffness matrix (DSM) approach

and wave amplitudes (WA) approach, and respectively involve expressing the con-

densed dynamic stiffness matrix of a periodic structure in terms of wave modes

[8], or the vectors of wave amplitudes of the right-going and left-going modes

[9, 12, 13].

The feature of the WFE method is that it makes use of the FE model of one

single substructure only, rather than considering the full FE model of a whole peri-

odic structure. This makes the WFE method quite fast for describing the dynamic

behavior of periodic structures when compared to the conventional FE method and

FE-based CMS methods like the Craig-Bampton method [14]. A proof of this in-

teresting feature is given in [12] along with a qualitative comparison between the

WFE method and other numerical wave-based methods.

It should be emphasized, however, that the WFE method has to face several

severe issues. One of these is the consideration of periodic structures that contain
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arbitrary-shaped substructures, i.e., substructures which are not necessarily sym-

metric with respect to their mid-plane. The issue lies in the computation of the

wave modes traveling in right and left direction along a periodic structure, which

may not be exactly coherent to each other due to numerical dispersion effects.

This particularly means that the wave velocities of a pair of wave modes travel-

ing in opposite directions may not be exactly the same. It has been shown in [13]

that this can be the source of ill-conditioned problems, which may greatly impact

the description of the dynamic behavior of the structure. As a second issue, the

consideration of substructures whose left and right cross-sections contain many

degrees of freedom (DOFs) yields a large-sized generalized eigenproblem whose

computation at many discrete frequencies may be extremely cumbersome, hence

discrediting the WFE method in front of the conventional FE-based approaches.

The aforementioned issues are addressed throughout the present paper. One

feature of this work is the use of a generalized eigenproblem based on the so-called

S+S−1 transformation to compute the wave modes with accurate precision. In this

context, exact analytical relations can be considered so as to ensure the coherence

between the right-going and left-going wave modes. Notice that this technique

is not new as already proposed in [15, 16] within the framework of palindromic

quadratic eigenvalue problems. Its potentiality to predict the dynamic behavior of

engineering periodic structures has never been investigated so far, however. Be-

sides, the Lanczos method [17] is used to speed up the computation of the WFE

eigenproblem with a view to calculating a reduced number of wave modes only. To

achieve this task, an error indicator already proposed in [18] is considered to select

in an a priori process the number of wave modes that need to be computed. As

a second feature of this work, an efficient model reduction technique is proposed

which consists in partitioning a whole periodic structure into one central structure

surrounded by two extra substructures. In doing so, a few wave modes are only re-

4



quired for modeling the central periodic structure, hence enabling the computation

of those wave modes to be achieved in a very fast way by means of the Lanczos

method. In this framework, the extra substructures are the same as those compos-

ing the whole periodic structure and are modeled by means of the conventional FE

method. It is shown that this WFE-based model reduction technique yields a large

decrease of the CPU times for assessing the dynamic behavior of periodic struc-

tures like those mentioned above. To summarize, the novelties of the present work

are described as follows:

(i) To assess the potentiality of the S + S−1 transformation technique associ-

ated to the exact analytical relations to ensure the coherence between right-

going and left-going waves for accurately predicting the wave modes trav-

eling along periodic structures composed of arbitrary-shaped substructures,

and further their frequency response functions (FRFs).

(ii) To propose an efficient wave-based model reduction technique which can be

used for modeling periodic structures composed of substructures with large-

sized FE models, and which involves partitioning a whole periodic structure

into one central structure surrounded by two extra substructures.

The paper is based on the Finite Element Method and so the proposed method is

appropriate for low and mid-frequency regimes. For high frequencies, methods like

the Statistical Energy Analysis would be more appropriate. The main purpose of

the article is to use an improved version of the WFE for getting more efficient FEM

results which would be especially interesting for mid-frequency computations.

The rest of the paper is organized as follows. In Section 2, the basics of the

WFE method for describing the wave propagation along a one-dimensional peri-

odic structure are recalled. The strategy to compute the wave modes by means of

a generalized eigenproblem based on the S + S−1 transformation is proposed. Be-

5



sides, the basics of the DSM and WA approaches are recalled. The advantages and

drawbacks of both methods are also discussed. In Section 3, the WFE-based model

reduction technique, which consists in partitioning a whole periodic structure into

one central structure surrounded by two extra substructures, is fully developed.

Within that framework, reduced models that concern the DSM and WA approaches

are derived. Numerical experiments are finally brought in Section 4 that concern a

2D structure as well as a 3D stiffened shell with a periodic distribution of longitu-

dinal and circumferential stiffeners.

2. WFE method

2.1. Basic framework

The basics of the WFE method for describing waves which travel in right and

left directions along a one-dimensional periodic structure — i.e., which is com-

posed of identical substructures along a certain straight direction (see Figure 1) —

are recalled hereafter.

Figure 1: FE mesh of a periodic structure and related substructure.
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Within the present framework, the structures are assumed to be linear, elastic

and damped by means of a constant loss factor η. Also, they involve excitation

sources and kinematic/mechanical fields which are assumed to be harmonic time-

dependent, i.e., of the form g(ω)exp(iωt) where ω denotes the pulsation. Besides,

the substructures are modeled by means of the same FE mesh with a same number

(say, n) of DOFs over their left and right boundaries. In matrix form, the dynamic

equilibrium equation of a given substructure is expressed in the frequency domain

as

Dq = F, (1)

where D is the dynamic stiffness matrix of the substructure which remains the

same for all the substructures. It is expressed as D = −ω2M + (1 + iη)K where

M and K refer to the mass and stiffness matrices, respectively. Also in Eq. (1),

q and F are, respectively, the vectors of nodal displacements/rotations and nodal

forces/moments of the substructure. The key idea behind the WFE method is to

express a relation which links the kinematic/mechanical quantities on the right

boundary of the substructure to those on its left boundary. From Eq. (1), it is

expressed as [19]:

uR = SuL, (2)

where uR and uL are 2n× 1 state vectors, expressed as

uR =

 qR

FR

 , uL =

 qL

−FL

 . (3)

In Eq. (3), the subscripts L and R denote the DOFs which belong to the left and

right boundaries of the substructure, respectively. Also, S is a 2n × 2n matrix
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expressed as

S =

 −D∗−1LR D∗LL −D∗−1LR

D∗RL −D∗RRD
∗−1
LR D∗LL −D∗RRD

∗−1
LR

 , (4)

where D∗ refers to the dynamic stiffness matrix of the substructure condensed on

its left and right boundaries. Notice that the matrix S is symplectic [2], which

means that STJS = J, where

J =

 0 In

−In 0

 . (5)

Also, the matrix S is d−periodic (d being the length of each substructure), i.e., it

remains invariant under a translation of length d.

Besides, the coupling conditions at an interface, labeled as (k), between two

consecutive substructures k − 1 and k are expressed as u
(k)
R = u

(k)
L , which results

from the continuity of the displacements/rotations and the action-reaction law for

the forces/moments. Thus the following equation can be derived which links the

kinematic/mechanical quantities on the left boundaries of the substructures k − 1

and k:

u
(k)
L = Su

(k−1)
L , (6)

where the superscript (k−1) denotes the interface between the substructures k−2

and k − 1. According to Bloch’s theorem [20] and Eq. (6), the state vector

u
(k)
L can be expanded as u

(k)
L =

∑
j exp(−iβjd)Q

(k−1)
j φj , where {φj}j are the

right eigenvectors of the matrix S. Also, the eigenvalues of S are expressed as

µj = exp(−iβjd), where {βj}j have the meaning of wavenumbers. Besides, the

eigenvectors {φj}j have the meaning of wave shapes that occur on the substruc-

ture boundaries and “propagate” along the whole structure from substructure to
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substructure. Each wave shape can be partitioned as follows

φj =

φqj

φFj

 , (7)

where φqj and φFj are n × 1 vectors of displacement/rotation components and

force/moment components, respectively. The parameters {(µj ,φj)}j are referred

to as the wave modes of the periodic structure. In fact, there are twice as many

wave modes as the number of DOFs n used to discretize each substructure bound-

ary. Also, due to the symplectic nature of the matrix S, its eigenvalues come in

pairs as (µj , 1/µj). This particularly means that the set {(µj ,φj)}j can be parti-

tioned into n right-going wave modes {(µj ,φj)}j=1,...,n for which |µj | < 1, and

n left-going wave modes {(µ?j ,φ
?
j )}j=1,...,n for which µ?j = 1/µj , with |µ?j | > 1.

2.2. Wave mode computation

2.2.1. Preliminary comments

A common way to compute the eigensolutions of the matrix S is to consider

the following generalized eigenproblem [2, 9]:

Nwj = µjLwj , (8)

where

L =

 In 0

−D∗LL −D∗LR

 , N =

 0 In

D∗RL D∗RR

 , (9)

and

wj =

 φqj

µjφqj

 . (10)

9



The determination of the wave shapes simply follows as φj = Lwj . One fea-

ture of the generalized eigenproblem (8) is that it is well conditioned, which is

explained since the eigenvectors {wj}j involve displacement/rotation components

only, as opposed to the classic eigenvectors {φj}j where displacement/rotation

and force/moment components, whose values can be largely disparate, are to be

considered together. It should be pointed out that the generalized eigenproblem

(8) is usually prone to slight numerical dispersion effects for evaluating the wave

modes, which means that the computed eigenvalues for the left- and right-going

wave modes may not be exactly linked as µ?j = 1/µj . As explained in [13], this

yields ill-conditioned matrix systems for computing the forced response of peri-

odic structures. To solve this issue, a regularization procedure has been proposed

in [9] regarding periodic structures composed of symmetric substructures, i.e., sub-

structures which are symmetric with respect to their mid-plane. The procedure

consists in computing the right-going wave modes, and expressing the left-going

wave modes in closed-form by means of the following analytical relations: (i)

µ?j = 1/µj ; (ii) φ?qj = Rφqj and φ?Fj = −RφFj , whereR is a symmetry transfor-

mation matrix. It has been proved to be relevant for computing the forced response

of structures with accurate precision [12].

Problems arise when non-symmetric substructures are of concern, which is due

to the fact that the aforementioned analytical relations (ii) are not valid anymore.

To address this issue, a procedure has been proposed in [21] which provides a gen-

eral closed-form expression of the relations between the left-going and right-going

wave shapes. In this framework, a generalized eigenproblem based on a so-called

S + S−1 transformation is considered (see Section 2.2.2).
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2.2.2. Generalized eigenproblem based on the S + S−1 transformation

A generalized eigenproblem based on the S + S−1 transformation is proposed

for computing the wave modes efficiently. Although the procedure has been ana-

lyzed in previous works [21, 15], its potentiality to assess the wave modes traveling

along complex periodic structures, and further their dynamic behavior, has never

been investigated so far. The procedure described in [21, 15] is based on the fol-

lowing generalized eigenproblem, which is quite different from Eq. (8):

N′w′j = µjL
′w′j , (11)

where

L′ =

 0 In

D∗LR 0

 , N′ =

 D∗RL 0

−(D∗LL + D∗RR) −In

 , (12)

and

w′j =

 φqj

1
µj

D∗RLφqj

 . (13)

In Eq. (11), the eigenvalues {µj }j are the same as those of the matrix S (see

Section 2.1). One feature of the eigenproblem (11) is that it preserves in theory

the symplectic structure of the problem, i.e., the left-going and right-going wave

modes are retrieved as µ?j = 1/µj . This may be explained since the following

relation holds [21, 15]:

L′JL′T = N′JN′T . (14)

From Eq. (13), the eigenvectors of the matrix S are expressed as

φj =

 In 0

D∗RR In

w′j , φ?j =

 In 0

D∗RR In

w
′?
j , (15)
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where {w′?j }j denote the eigenvectors associated to the eigenvalues {µ?j}j which

are such that |µ?j | > 1. To derive Eq. (15), one has used the fact that φFj =

D∗RRφqj+(1/µj)D
∗
RLφqj and φ?Fj = D∗RRφ

?
qj+(1/µ?j )D

∗
RLφ

?
qj , which results from

the dynamic equilibrium equation of a substructure, i.e., FR = D∗RRqR + D∗RLqL.

Notice that the eigenvectors {w′j}j and {w′?j }j are partitioned into displace-

ment/rotation and force/moment components whose values can be largely dis-

parate, meaning that the eigenproblem (11) is likely to be ill-conditioned. To solve

this issue, the so-called S + S−1 transformation of the eigenproblem (11) is con-

sidered [16], which yields an eigenproblem whose eigenvalues are of the form

λj = µj + 1/µj , i.e.(
(N′JL

′T + L′JN
′T )− λjL′JL

′T
)

zj = 0, (16)

where

N′JL
′T + L′JN

′T =

 D∗RL −D∗LR (D∗LL + D∗RR)

−(D∗LL + D∗RR) D∗RL −D∗LR

 , (17)

and

L′JL
′T = N′JN

′T =

 0 −D∗RL

D∗LR 0

 . (18)

One feature of the eigenproblem (16) is that it involves skew-symmetric matrices

which are useful for speeding up the computation of the eigensolutions. Also,

the eigenvectors {zj}j are expressed in terms of displacement/rotation compo-

nents only. It is worth recalling that the eigenvalues of the eigenproblem (11)

(or (8)) come in pairs as (µj , µ
?
j = 1/µj), meaning that the eigenvalues of the

eigenproblem (16) are double, i.e., (λj , λ
?
j = λj). By considering the fact that

λj = µj + 1/µj , each pair of eigenvalues (µj , µ
?
j ) can be found analytically by

solving a quadratic equation of the form

x2 − λjx+ 1 = 0, (19)
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where it is understood that the relation µ?j = 1/µj can be verified with accurate

precision. Also, there exist closed-form expressions linking the eigenvectors of the

eigenproblem (16) to those of the eigenproblem (11) (see [21]):

w′j = J(L
′T − µ?jN

′T )zj , w
′?
j = J(L

′T − µjN
′T )zj . (20)

A proof of this result follows from the following factorizations of Eq. (16):(
N′J(L

′T − (1/µj)N
′T )− µjL′J(L

′T − (1/µj)N
′T )
)

zj = 0, (21)(
N′J(L

′T − µjN
′T )− (1/µj)L

′J(L
′T − µjN

′T )
)

zj = 0, (22)

which mean that J(L
′T − (1/µj)N

′T )zj and J(L
′T − µjN

′T )zj are eigenvec-

tors of the eigenproblem (11) for the eigenvalues µj and µ?j = 1/µj , respectively.

Once the eigenvectors {w′j}j and {w′?j }j are computed, the wave shapes {φ′j}j

and {φ′?j }j are determined from Eq. (15).

Remark. For large-scale structures, it can be interesting to compute a re-

duced number of eigenvalues and eigenvectors, only. For instance, by considering

a parameter α > 1, it is readily seen from the relation λj = µj + 1/µj that if
1
α < |µj | < α, then |λj | < α + 1. So, choosing an eigensolver to compute those

eigenvalues λj which are such that |λj | < α + 1, for a given α > 1, also provides

the eigenvalues µj which are such that 1
α < |µj | < α.

2.3. Forced response computation

2.3.1. Introduction

The basics of the WFE method for computing the forced response of periodic

structures are recalled hereafter. Emphasis will be placed on the study of periodic

structures whose left and right ends are connected to elastic subsystems, as shown
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in Figure 2, because they will be of primary concern in the wave-based model

reduction technique proposed in Section 3.

Figure 2: Periodic structure connected to two elastic subsystems.

In fact, there exist two main strategies for computing the forced response of a

periodic structure, namely the dynamic stiffness matrix (DSM) approach and the

wave amplitude (WA) approach. The DSM approach focuses on expressing a ma-

trix relation to link the vector of forces/moments to that of displacements/rotations

on the left and right ends of the structure. This yields a super-element formulation

which appears to be completely similar to that proposed by the conventional FE

method. The difference between the WFE and FE procedures lies in the use of

wave modes for expressing the DSM [3, 8]. On the other hand, the WA approach

focuses on assessing the wave reflection/transmission coefficients at the BCs while

considering the spatial variation of the wave amplitudes along the structure. This

leads to the derivation of linear matrix systems whose resolution provides the vec-

tors of amplitudes of the right-going and left-going wave modes [12].

While the DSM approach appears to be easy of use as dealing with the con-

ventional matrix equations of the FE method, the WA approach involves wave-

based formulations which need to be investigated on a case-by-case basis. In con-

trast, the WA approach involves matrix systems which are rather simple and well-

conditioned compared to those provided by the DSM approach. This is explained

because the WA approach deals with vectors of wave amplitudes whose variation

14



along the structure is governed in a very simple way in terms of diagonal matrices.

Also, the computation of the WA-based matrix systems requires less CPU times

than the DSM approach. For the sake of clarity, the basics of the DSM and WA

approaches are recalled hereafter.

2.3.2. DSM approach

The framework of the DSM approach is to consider the following matrix equa-

tion, which links the DOFs on the left and right ends of a periodic structure made

up of N substructures: F
(1)
L

F
(N+1)
R

 = Ds

 q
(1)
L

q
(N+1)
R

 , (23)

where the superscripts (1) and (N + 1) denote the left and right ends of the struc-

ture, respectively. Also, Ds is the dynamic stiffness matrix of the structure which is

condensed on its left and right ends. It is expressed as (see Appendix A for further

details):

Ds =

D∗LL 0

0 D∗RR

+

D∗LR 0

0 D∗RL

Φ?
qµ

N−1Φ?−1
q ΦqµΦ−1q

Φ?
qµΦ?−1

q Φqµ
N−1Φ−1q


×

Φ?
qµ

NΦ?−1
q In

In Φqµ
NΦ−1q

−1 , (24)

where Φq and Φ?
q are square n × n matrices defined as Φq = [φq1 · · ·φqn]

and Φ?
q = [φ?q1 · · ·φ?qn]. Also, µ is a n × n diagonal matrix whose compo-

nents relate the eigenvalues for the right-going wave modes (see Section 2.1), i.e.,

µ = diag{µj}j=1,...,n. Notice that the 2−norm [17] of the matrix µ is less than

one, i.e., ‖µ‖2 < 1, which is explained because ‖µ‖2 = max|µj | < 1 by conven-

tion (see below Eq. (7)).

15



The dynamic stiffness matrix Ds of the periodic structure can be readily as-

sembled with the dynamic stiffness matrices of other elastic subsystems as this is

usually done in the FE method, with a view to expressing a global dynamic stiff-

ness matrix Dt. For instance, consider the global structure shown in Figure 2,

composed of three subparts — i.e., a subsystem 1 with a dynamic stiffness matrix

D1, a periodic structure with N substructures which is modeled by means of the

dynamic stiffness matrix Ds (Eq. (24)), and a subsystem 2 with a dynamic stiff-

ness matrix D2. In this case, the global dynamic stiffness matrix Dt of the coupled

system is expressed as

Dt = LT1 D1L1 + LTs DsLs + LT2 D2L2, (25)

where L1 and L2 are Boolean incidence matrices which “map” the DOFs in the

local coordinate spaces of the subsystems 1 and 2, respectively, to the global coor-

dinate space of the coupled system. Also, Ls is a Boolean incidence matrix which

maps the DOFs on the left and right boundaries of the periodic structure, in its

local coordinate space, to the global coordinate space of the coupled system. No-

tice that the subsystems 1 and 2 can be subject to arbitrary vectors of prescribed

displacements/rotations and forces/moments. As a result, the dynamic equilibrium

equation of the coupled system is expressed as

Dtq = F, (26)

where q represents the global vector of displacements/rotations which takes into

account the DOFs of the subsystems 1 and 2, as well as the DOFs on the left

and right boundaries of the periodic structure. Also, F represents a global vec-

tor of forces/moments which reflects the excitation sources applied to the coupled

system. The determination of the global vector of displacements/rotations hence

follows by solving the linear system (26), i.e., q = D−1t F.
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2.3.3. WA approach

Consider a periodic structure composed of N substructures and denote as (k)

(k = 1, . . . , N+1) a given substructure boundary, i.e., either the interface between

two consecutive substructures, or a limiting end of the whole periodic structure.

Within the WFE framework, the vectors of displacements/rotations and forces/moments

on the substructure boundary (k) are estimated by means of a wave expansion, as

follows [13]:

q(k) = Φqµ
k−1Q+Φ?

qµ
N+1−kQ? , ±F(k) = ΦFµ

k−1Q+Φ?
Fµ

N+1−kQ?,

(27)

where Φq, Φ?
q, ΦF and Φ?

F are square n×nmatrices defined as Φq = [φq1 · · ·φqn],

Φ?
q = [φ?q1 · · ·φ?qn], ΦF = [φF1 · · ·φFn] and Φ?

F = [φ?F1 · · ·φ?Fn]. It has been

proved in [9] that these matrices are full rank, which means that they can be in-

verted without difficulty. Also, in Eq. (27), Q and Q? are vectors of wave ampli-

tudes at the left and right ends of the whole periodic structure, respectively. Finally,

the sign ahead of F results from the choice of description considered, i.e., it is neg-

ative when the left boundary of a substructure is of concern, and positive for the

right boundary.

The determination of the vectors of wave amplitudes Q and Q? involves con-

sidering the BCs on the left and right ends of the whole periodic structure. For

instance, regarding the case shown in Figure 2 when the left and right ends of the

periodic structure are connected to extra elastic subsystems, the BCs are expressed

as (see Appendix B for further details):

−F
(1)
L = Dq

(1)
L +Dqq0+DFF0 , −F

(N+1)
R = D?q(N+1)

R +D?qq?0+D?FF?
0, (28)

where D and D? denote the dynamic stiffness matrices of the subsystems which are

condensed on the interface DOFs. Also, Dq and D?q (resp. DF and D?F) are matrices
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which reflect the effects of prescribed vectors of displacements/rotations (q0,q?0)

(resp. prescribed vectors of forces/moments (F0,F?
0)) that may be applied to the

subsystems.

By considering the wave expansion (27), the BCs can be expressed in wave-

based form, as follows:

Q = CµNQ? + F , Q? = C?µNQ + F?, (29)

where C and C? are n× n scattering matrices whose components relate the reflec-

tion coefficients for the wave modes incident to the boundaries, while F and F? are

n× 1 vectors which relate the effects of the excitation sources. Expressions for C,

C?, F and F? follow from the aforementioned BCs, i.e:

C = −[DΦq−ΦF]
−1[DΦ?

q−Φ?
F] , C? = −[D?Φ?

q+Φ?
F]
−1[D?Φq+ΦF], (30)

F = −[DΦq−ΦF]
−1[Dqq0+DFF0] , F? = −[D?Φq+ΦF]

−1[D?qq?0+D?FF?
0].

(31)

By considering the wave-based BCs, Eq. (29), a whole matrix equation is estab-

lished as follows:

AQ = F , (32)

where

A =

 In −CµN

−C?µN In

 , Q =

Q

Q?

 , F =

 F

F?

 . (33)

Solving the matrix equation (32) yields the vectors of wave amplitudes as Q =

A−1F . The feature of the proposed wave-based formulation is that the matrix A

is likely to be well-conditioned, as explained in [9, 12]. Hence, it can be inverted
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without difficulty. Finally, once the vectors of wave amplitudes are computed, the

vectors of nodal displacements/rotations and forces/moments of the periodic struc-

ture can be estimated by means of the wave expansion (27).

3. Model reduction

3.1. Motivation and framework

As it is well known, waves traveling along a structure like the one shown in

Figure 1 can be classified into weakly evanescent, which would be propagative if

there were no damping, and strongly evanescent, i.e., which decay exponentially

from the excitation sources. So, one may assume that far from the sources these

evanescent waves are weakly contributing to the structure dynamics. Besides, one

expects a large amount of CPU times to be saved, e.g., when expressing the dy-

namic stiffness matrix of a periodic structure in wave-based form as in Eq. (24),

rather than assembling the elementary FE matrices of all the substructures explic-

itly. This constitutes one interesting feature of the WFE method, which remains

however verified provided that a reasonable number of wave modes are used for

expressing the dynamic stiffness matrix of the structure. The issue may be viewed

as to overcome the computation of a full set of wave modes that may be extremely

cumbersome in case when the substructures have large-sized FE models. More

generally, the determination of the FRF of a periodic structure by means of the

WFE method requires the following numerical tasks to be carried out at several

discrete frequencies [13]:

(i) Computation of the 2n × 2n condensed dynamic stiffness matrix D∗ of a

substructure (Section 2.1).

(ii) Computation of the 2n× 2n eigenproblem (16).
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(iii) Computation of the 2n × 2n dynamic stiffness matrix of the structure (Eq.

(24) or (25)), or the 2n× 2n matrix A (Eq. (32)), and its inverse.

Those numerical tasks may be extremely prohibitive from the computational point

of view, it being understood that the number of DOFs n over the structure cross-

section can be large. While the computation of the condensed dynamic stiffness

matrix D∗ can be achieved at a reduced computational cost by means of the Craig-

Bampton method [13], the numerical task (ii) is the one which can be extremely

cumbersome. To solve this issue, the Lanczos method [17] can be used to compute

reduced sets of wave modes {(µ̃j , φ̃j)}j=1,...,m and {(µ̃?j , φ̃
?
j )}j=1,...,m, rather than

the full sets {(µj ,φj)}j=1,...,n and {(µ?j ,φ
?
j )}j=1,...,n, so that {(µ̃j , φ̃j)}j=1,...,m ⊂

{(µj ,φj)}j=1,...,n and {(µ̃?j , φ̃
?
j )}j=1,...,m ⊂ {(µ?j ,φ

?
j )}j=1,...,n where m is ex-

pected to be much smaller than n. Since the Lanczos method focuses on comput-

ing reduced sets of wave modes only, the numerical task (ii) can be considerably

sped up. Here, the sought wave modes are those with the largest magnitudes |µ̃j |

and the lowest magnitudes |µ̃?j |, where it is understood that those magnitudes are

chosen so that they are the closest to unity. In other words, the sought wave modes

represent propagating waves and other waves whose evanescent parts are not too

strong. The relevant question which needs to be addressed here is to determine, in

an a priori selection process, the number m of wave modes to be computed from

the Lanczos method. The issue lies in the fact that the reduced family of wave

shapes {φ̃j}j ∪ {φ̃
?
j}j must be rich enough for accurately describing the dynamic

behavior of the periodic structure.

The strategy to determine the number m of wave modes to be computed by

means of the Lanczos method may be carried out by considering an error analysis

like the one proposed in [18] (see Section 3.3). Notice that this number can be

large to ensure the convergence of the WFE method for describing the vectors of
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nodal displacements/rotations and forces/moments of the structure. This is under-

stood because high-order wave shapes, which are associated to strongly evanescent

waves, are usually required to describe the BCs of the structure on its left and right

ends. This is explained because BCs usually involve stress fields which can be lo-

cally sharped in space, as well as highly fluctuating. One attempt which solves this

issue is to partition the whole periodic structure into three parts as shown in Figure

3. Here, a central periodic structure consisting ofN−2 substructures is considered

which is surrounded by two extra substructures. Such a central periodic structure is

analyzed by means of the WFE method (Section 2.3), while the extra substructures

are modeled by means of the FE method and are treated as BCs like those involved

by Eq. (25), or Eqs. (30) and (31). The motivation behind this partitioning is that

the stress fields induced by the BCs on the left and right ends of the whole system

are expected to be smooth over the interfaces between the central structure and the

extra substructures. In other words, the number of wave modes that is required for

modeling the central periodic structure is expected to be much smaller than that

required in case of no extra substructures. This means CPU time savings regarding

the computation of wave modes by means of the Lanczos method. Such a model

reduction strategy, consisting in partitioning a whole periodic structure into one

central structure modeled by means of a few wave modes and surrounded by two

extra FE substructures, constitutes the main originality of the present work. The

related reduced modelings are developed in Section 3.2 regarding both the DSM

and WA approaches. Also, the selection process of the wave modes that need to be

retained for modeling the central periodic structure are analyzed in Section 3.3 in

accordance with past studies [18].

Prior to any rigorous derivation, a simple qualitative analysis is proposed here

to quantify the error made when some strong evanescent wave modes are neglected
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Figure 3: Central periodic structure surrounded by two extra substructures.

in the WFE-based formulations.

Consider the central periodic structure as shown in Figure 3, which is enclosed

between the substructure boundary (1) — namely, the right boundary of the left

extra substructure — and the substructure boundary (N − 1) — namely, the left

boundary of the right extra substructure. Assume that the excitation sources occur

on the left boundary of the left extra substructure, and the right boundary of the

right extra substructure, only. Denote as Q the vector of wave amplitudes at the

left end of the left extra substructure, and Q? the vector of wave amplitudes at

the right end of the right extra substructure. By considering the wave expansion

(27), the vectors of displacements/rotations and forces/moments along the central

periodic structure are expressed as

q(k) = Φqµ
kQ + Φ?

qµ
N−kQ? , ±F(k) = ΦFµ

kQ + Φ?
Fµ

N−kQ?, (34)

where 1 ≤ k ≤ N − 1. Eq. (3.1) can also be written as

q(k) =

n∑
j=1

(
µkjqj + µN−kj q?j

)
=

n∑
j=1

µj

(
µk−1j qj + µN−1−kj q?j

)
, (35)

±F(k) =

n∑
j=1

(
µkjFj + µN−kj F?

j

)
=

n∑
j=1

µj

(
µk−1j Fj + µN−1−kj F?

j

)
, (36)

where qj = QjΦqj , q?j = Q?jΦqj , Fj = QjΦFj and F?
j = Q?jΦ

?
Fj . Since the inte-

ger k is such that 1 ≤ k ≤ N − 1, one has k− 1 ≥ 0 and N − 1− k ≥ 0, and then
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|µj |k−1 ≤ 1 and |µj |N−1−k ≤ 1. This is explained because |µj | < 1 by convention

(see below Eq. (7)). Let us denote as q̄(k) and F̄(k) the parts of the vectors of dis-

placements/rotations and forces/moments which are induced by strongly evanes-

cent wave modes, only. Denote as {(µ̄j , φ̄j)}j=1,...,n−m and {(µ̄?j , φ̄
?
j )}j=1,...,n−m

those evanescent wave modes which are such that {(µ̄j , φ̄j)}j=1,...,n−m ⊂ {(µj ,φj)}j=1,...,n

and {(µ̄?j , φ̄
?
j )}j=1,...,n−m ⊂ {(µ?j ,φ

?
j )}j=1,...,n wherem > 1. From Eqs. (35) and

(36), q̄(k) and F̄(k) are expressed as

q̄(k) =

n−m∑
j=1

µ̄j

(
µ̄k−1j q̄j + µ̄N−1−kj q̄?j

)
, (37)

±F̄(k) =

n−m∑
j=1

µ̄j

(
µ̄k−1j F̄j + µ̄N−1−kj F̄?

j

)
. (38)

Thus, by invoking the norms of q̄(k) and F̄(k), this yields

‖q̄(k)‖ ≤
n−m∑
j=1

|µ̄j |
(
‖q̄j‖+ ‖q̄?j‖

)
, (39)

‖F̄(k)‖ ≤
n−m∑
j=1

|µ̄j |
(
‖F̄j‖+ ‖F̄?

j‖
)
, (40)

where ‖.‖ denotes the 2−norm. Since highly evanescent wave modes are of con-

cern, one expects |µ̄j | � 1. To summarize, it seems logical from Eqs. (39) and

(40) to neglect these wave modes.

3.2. Reduced modelings

3.2.1. Introduction

The WFE-based reduced models, which use the aforementioned concept of a

central periodic structure that is modeled by means of the WFE method and sur-

rounded by two extra substructures (Figure 3), are developed in the subsequent
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sections. Section 3.2.2 addresses the use of the DSM approach (see Section 2.3.2)

for modeling the central periodic structure, while Section 3.2.3 deals with the WA

approach (see Section 2.3.3). The key idea behind the proposed reduced mod-

els is to expand the vectors of displacements/rotations and forces/moments of the

central periodic structure onto a reduced basis of wave shapes {φ̃j}j=1,...,m ∪

{φ̃?j}j=1,...,m, as explained in Section 3.1. This will be detailed in Section 3.2.3.

The strategy to determine the numberm of right-going and left-going wave modes,

which need to be computed by means of the Lanczos method (cf. Section 3.1), will

be developed in Section 3.3.

3.2.2. DSM approach

By expanding the vectors of displacements/rotations and forces/moments of

the structure onto the reduced wave basis {φ̃j}j=1,...,m ∪ {φ̃
?
j}j=1,...,m, the dy-

namic stiffness matrix of the central periodic structure — namely, Dr
s — can be

approximated as Dr
s ≈ D̃r

s, where D̃r
s is defined so that F̃

(1)
L

F̃
(N−1)
R

 = D̃r
s

 q̃
(1)
L

q̃
(N−1)
R

 . (41)

Here, q̃
(1)
L and F̃

(1)
L (resp. q̃

(N−1)
R and F̃

(N−1)
R ) refer to the approximated vectors

of displacements/rotations and forces/vectors, respectively, on the left (resp. right)

end of the central structure. The derivation of the dynamic stiffness matrix D̃r
s
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follows from that of Ds (Appendix A), i.e.

D̃r
s =

D∗LL 0

0 D∗RR

+

D∗LR 0

0 D∗RL

Φ̃?
qµ̃

N−3Φ̃?+
q Φ̃qµ̃Φ̃+

q

Φ̃?
qµ̃Φ̃?+

q Φ̃qµ̃
N−3Φ̃+

q


×

Φ̃?
qµ̃

N−2Φ̃?+
q Im

Im Φ̃qµ̃
N−2Φ̃+

q

−1 (42)

where Φ̃q and Φ̃
?
q are n×m rectangular matrices defined so that Φ̃q = [φ̃q1 · · · φ̃qm]

and Φ̃
?
q = [φ̃

?
q1 · · · φ̃

?
qm]; also µ̃ is a m × m diagonal matrix defined as µ̃ =

diag{µ̃j}j=1,...,m; finally, Φ̃+
q and Φ̃?+

q are the left pseudo-inverses of Φ̃q and

Φ̃?
q, which are defined so that Φ̃+

q = [Φ̃H
q Φ̃q]

−1Φ̃H
q and Φ̃?+

q = [Φ̃?H
q Φ̃?

q]
−1Φ̃?H

q ,

where the superscript H is the conjugate transpose.

The dynamic stiffness matrix D̃r
s is to be assembled with the dynamic stiffness

matrices of the left and right extra substructures (Figure 3) to express the dynamic

stiffness matrix D̃s of the whole periodic structure, i.e., the one composed of N

substructures. This is done by following the same method as in Eq. (25). Ul-

timately, the dynamic stiffness matrix D̃s of the whole periodic structure might

be assembled with those issued from other components with a view to modeling

complex coupled systems.

It is worth pointing out that the computation of the dynamic stiffness matrix D̃r
s

of the central periodic structure can be achieved in a very fast way, as opposed to the

conventional reduction techniques like the Craig-Bampton (CB) method. Indeed,

the proposed reduced modeling invokes a few wave modes which are solutions of

an eigenproblem with a small size (2n × 2n), even though those few wave modes

need to be computed at several discrete frequencies. This leads to the consideration

of small matrices of eigenvectors {φ̃j}j and {φ̃?j}j which do not necessitate ex-

cessive memory storage. On the other hand, the CB method usually involves fully

populated matrices of static modes and fixed-interface modes with a large number
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of raws rows ?— indeed, these are linked to the number of internal DOFs of the

whole structure which can be large in case when a large number of substructures

are dealt with —, hence requiring high memory storage. Besides, as it is well

known for complex structures, a large number of fixed-interface modes are usually

required to achieved the convergence of the CB solutions, i.e., their computation

necessitates high CPU times. These concepts will be clearly highlighted in Section

4.3.

3.2.3. WA approach

From Eq. (27), the approximated vectors of nodal displacements/rotations and

forces/moments on a substructure boundary (k) (1 ≤ k ≤ N −1) along the central

periodic structure are expressed as

q̃(k) = Φ̃qµ̃
k−1Q̃+Φ̃

?
qµ̃

N−1−kQ̃? , ±F̃(k) = Φ̃Fµ̃
k−1Q̃+Φ̃

?
Fµ̃

N−1−kQ̃?,

(43)

where Φ̃q = [φ̃q1 · · · φ̃qm], Φ̃
?
q = [φ̃

?
q1 · · · φ̃

?
qm], Φ̃F = [φ̃F1 · · · φ̃Fm] and Φ̃

?
F =

[φ̃
?
F1 · · · φ̃

?
Fm]. Also note that, within the present framework, Q̃ (resp. Q̃?) is to be

understood as the vector of wave amplitudes of the right-going (resp. left-going)

wave modes at the left (resp. right) end of the central structure. The computation

of Q̃ and Q̃? follows from the following reduced matrix equation (cf. Eq. (32)):

ÃQ̃ = F̃ , (44)

where

Ã =

 Im −C̃µ̃N−2

−C̃?µ̃N−2 Im

 , Q̃ =

 Q̃

Q̃?

 , F̃ =

 F̃

F̃?

 . (45)
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In Eq. (45), C̃ and C̃? are m × m scattering matrices which relate the coupling

conditions with the extra substructures. Also, F̃ and F̃? are m × 1 vectors which

relate the excitation sources on the left and right ends of the central periodic struc-

ture, respectively. The expressions of C̃, C̃?, F̃ and F̃? follow from the use of the

matrices Φ̃q, Φ̃
?
q, Φ̃F and Φ̃

?
F in Eqs. (30)-(31), rather than Φq, Φ?

q, ΦF and Φ?
F,

i.e.

C̃ = −[DΦ̃q−Φ̃F]
+[DΦ̃

?
q−Φ̃

?
F] , C̃? = −[D?Φ̃?

q+Φ̃
?
F]
+[D?Φ̃q+Φ̃F], (46)

F̃ = −[DΦ̃q−Φ̃F]
+[Dqq0+DFF0] , F̃? = −[D?Φ̃q+Φ̃F]

+[D?qq?0+D?FF?
0],

(47)

where the superscript + denotes the left pseudo-inverse. Also, D and D? stand for

the condensed dynamic stiffness matrices of the extra substructures. Recall that the

extra substructures are completely similar to those composing the central periodic

structure, i.e., their dynamic stiffness matrices D and D? can be readily obtained

from a previous analysis.

3.3. Error indicator

The selection of the number m of right-going and left-going wave modes in

the central periodic structure that need to be computed from the Lanczos method

is addressed here using the strategy proposed in [18]. In this work, it is suggested

to bound the relative errors, for the vectors of nodal displacements/rotations and

forces/moments, as follows:

‖q̃(k) − q(k)‖
‖q(k)‖

≤ Es ,
‖F̃(k) − F(k)‖
‖F(k)‖

≤ Es ∀k, (48)
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where

Es = max

{[
(εE1 + εE2 ) +

‖As‖
1− ‖As‖

(εA1 + εA2 )

]
1 + ‖As‖
1− ‖As‖

,[
(εE

?

1 + εE
?

2 ) +
‖A?s‖

1− ‖A?s‖
(εA

?

1 + εA
?

2 )

]
1 + ‖A?s‖
1− ‖A?s‖

}
. (49)

Notice that the error bound Es involves matrix terms (namely, A and A?) and

vector terms (namely, B, B?, Es and E?
s), which appears to be more accurate than

only analyzing the vectors of wave amplitudes. Within the present framework,

those matrix/vector terms are expressed as:

A = CµN−2C?µN−2 , A? = C?µN−2CµN−2, (50)

B = CµN−2F? + F , B? = C?µN−2F + F?, (51)

Es =

s−1∑
p=0

Ap

B , E?
s =

s−1∑
p=0

A?p

B?, (52)

where (C, F) and (F, C?) (pas de F? ?) are scattering matrices and vectors of

excitations sources that relate the coupling conditions between the central structure

and the extra substructures, see Eqs. (30) and (31). Also, in Eq. (52), s is an integer

defined so that

s = max {u : ||Au|| ≥ 0.1 and ||A?u|| ≥ 0.1} . (53)

Besides, in Eq. (49), εE1 , εE2 , εE
?

1 and εE
?

2 are error parameters expressed as

εE1 =
‖Ẽs − L̃Es‖
‖Es‖

, εE2 =
‖LrEs‖
‖Es‖

, (54)

εE
?

1 =
‖Ẽ?

s − L̃E?
s‖

‖E?
s‖

, εE
?

2 =
‖LrE?

s‖
‖E?

s‖
, (55)

εA1 =
‖ÃsL̃ − L̃As‖
‖As‖

, εA2 =
‖LrAsL̃T ‖
‖As‖

, (56)
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εA
?

1 =
‖Ã?sL̃ − L̃A?s‖

‖A?s‖
, εA

?

2 =
‖LrA?sL̃T ‖
‖A?s‖

, (57)

where Lr and L̃ are Boolean incidence matrices that localize, respectively, the re-

jected and retained wave modes. It should be emphasized that the mathematical

expression of the error bound Es, Eq. (49), remains valid provided that the fol-

lowing two assumptions are verified: (i) the spectral radii of the matrices A and

A? are less than unity, i.e., ρ(A) < 1 and ρ(A?) < 1; (ii) ‖Ãs‖ ≤ ‖As‖ and

‖Ã?s‖ ≤ ‖A?s‖.

One of the features of the proposed error analysis is that the error bound Es is to

be computed at the maximum discrete frequency considered within the frequency

band of interest, only, as explained in [18]. The strategy behind the selection pro-

cess of the wave modes consists in expressing the error bound Es as a function of

the size m of the reduced sets of wave shapes {φ̃j}j=1,...,m and {φ̃?j}j=1,...,m. For

this purpose, a preliminary task is considered where the right-going wave modes

{(µj ,φj)}j are ranked in descending order with respect to the magnitudes |µj |,

while the left-going wave modes {(µ?j ,φ
?
j )}j are ranked in ascending order with

respect to the magnitudes |µ?j |. The motivation behind this ranking procedure re-

flects the need to retain the wave modes which are propagating or are close to be-

coming propagating, it being understood that these modes are likely to contribute

to the dynamic behavior of the structure. In other words, the convergence of the

WFE-based reduced models might be favored by ranking the wave modes in such

a way. The selection strategy hence follows by selecting the smallest number m

for which the value of the error bound Es shrinks under a certain small tolerance

threshold.

It should be emphasized that the proposed selection strategy requires all the

wave modes to be computed at the maximum discrete frequency considered within

the frequency band of interest, with a view to expressing the matrices (A, A?)
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and the vectors (Es, E?
s) in Eqs. (54)-(57). This constitutes a numerical task

which may be time consuming especially when the substructures of concern have

large-sized FE models. To overcome this issue, it is proposed to express these

matrices/vectors using an intermediate reduced basis {φ̂j}j=1,...,n̂ ∪ {φ̂
?

j}j=1,...,n̂,

which contain a reasonably large number 2n̂ < 2n of wave shapes. Here, the wave

shapes {φ̂j}j=1,...,n̂ and {φ̂?j}j=1,...,n̂ represent those with the n̂−th largest mag-

nitudes |µj | and the n̂−th smallest magnitudes |µ?j |, respectively. For instance, one

may choose the integer n̂ so that n̂ ≈ n/3. The relevance of this assumption lies in

the fact that highly evanescent wave modes are likely to be weakly contributing to

the dynamic behavior of the structure, as outlined in Section 3.1. The consideration

of such an intermediate reduced basis {φ̂j}j ∪ {φ̂
?

j}j enables the computational

time associated to the mode selection strategy to be lowered, hence becoming neg-

ligible compared to that required by the computation of the forced response of the

structure. In this framework, the errors parameters occurring in Eq. (49) are to be

expressed as follows:

εE1 →
‖Ẽs − L̃Ês‖
‖Ês‖

, εE2 →
‖LrÊs‖
‖Ês‖

, (58)

εE
?

1 →
‖Ẽ?

s − L̃Ê?
s‖

‖Ê?
s‖

, εE
?

2 →
‖LrÊ?

s‖
‖Ê?

s‖
, (59)

εA1 →
‖ÃsL̃ − L̃Âs‖
‖Âs‖

, εA2 →
‖LrÂsL̃T ‖
‖Âs‖

, (60)

εA
?

1 → ‖Ã
?sL̃ − L̃Â?s‖
‖Â?s‖

, εA
?

2 → ‖LrÂ
?sL̃T ‖

‖Â?s‖
, (61)

where the notation .̂ indicates that the vector/matrix terms are expressed using the

intermediate reduced basis {φ̂j}j ∪ {φ̂
?

j}j . In Eqs. (58)-(61), Lr and L̃ are to

be understood as incidence matrices that localize, respectively, the rejected and

retained wave modes among the set {(µ̂j , φ̂j)}j ∪ {(µ̂?j , φ̂
?

j )}j .
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Finally note that the error bound (Eq. (49)) may be evaluated for some few

integers m = p∆n (p = 1, . . . , P ) to improve further the computational speed

of the wave mode selection process. Here, ∆n and P are integers defined so that

∆n > 1, P∆n ≈ n̂ and P∆n ≤ n̂.

The strategy to determine the number m of wave modes to be computed from

the Lanczos method (Section 3.1) is summarized as follows:

1. Compute the wave modes {(µ̂j , φ̂j)}j=1,...,n̂ and {(µ̂?j , φ̂
?

j )}j=1,...,n̂ for n̂ ≈

n/3, by means of the eigenproblem (16) and the Lanczos method, at the max-

imum frequency within the frequency band of interest. Within the Lanczos

framework, the wave modes {(µ̂j , φ̂j)}j and {(µ̂?j , φ̂
?

j )}j are to be sought

as those with the largest magnitudes |µ̂j | and the smallest magnitudes |µ̂?j |,

respectively.

2. Rank the wave modes {(µ̂j , φ̂j)}j in descending order with respect to the

magnitudes |µ̂j |, and conversely, rank the wave modes {(µ̂?j , φ̂
?

j )}j in as-

cending order with respect to the magnitudes |µ̂?j |.

3. Plot the error bound Es by means of Eq. (49) and Eqs. (58)-(61), as a

function of the number m (m = ∆n, 2∆n, . . .) of the right/left-going wave

modes retained.

4. Select the integer m as soon as the value of the error bound Es shrinks under

a certain small tolerance threshold.
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4. Numerical experiments

4.1. Introduction

To highlight the efficiency of the proposed reduction method (Section 3), two

test cases are investigated that concern: (i) a 2D periodic structure undergoing

plane stresses (see Figure 1); (ii) a 3D cylindrical shell with a periodic distribution

of longitudinal and circumferential stiffeners (see Figure 10). Both structures ex-

hibit substructures which are not symmetric. The first test case is rather simple;

it aims at proving that a large reduction of the size of the wave mode basis can

be achieved for modeling a periodic structure. In contrast, the second test case

is complex as involving a FE model with 629, 748 DOFs, and an eigenproblem

(16) with a size of 2376 × 2376. The motivation here consists in proving that the

WFE method yields a large decrease of the CPU times for computing the frequency

forced response of the structure, in comparison with the conventional FE method.

For the sake of conciseness, the first test case is analyzed by means of the DSM

approach depicted in Section 3.2.2, while the second one is investigated by means

of the WA approach (Section 3.2.3). Within the framework of the DSM and WA

approaches, the FRFs of the structures are computed using MATLAB R©. These are

compared with reference results issued from the conventional FE method when the

FRFs are computed using a commercial FE software.

4.2. 2D periodic structure

As a first example, the frequency forced response of a 2D periodic structure,

undergoing plane stresses, is investigated (see Figure 1). The whole periodic struc-

ture is made up of N = 15 identical substructures whose dimensions are shown in

Figure 4. Each substructure is meshed by means of 2D linear triangular elements
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whose nodes exhibit horizontal and vertical displacement DOFs. Also, the struc-

ture exhibits the following material characteristics: Young’s modulus of 210GPa,

density of 7800kg/m3, Poisson’s ratio of 0.3 and a loss factor of 0.001. Also, its

thickness is 0.001m. The structure is excited by a unit point force acting along the

horizontal x−direction at the bottom corner of the left end; also, it is clamped over

its right end.

X

Y

(0,0.1) (0.1,0.1)

(0,0) (0.1,0)

(0.05,0.08) (0.08,0.08)

Figure 4: Geometry and mesh of a substructure composing the 2D periodic structure displayed in

Figure 1 (dimensions are provided in meters).

The DSM approach proposed in Section 3.2.2 is used to compute the FRF

of the structure — i.e., the frequency evolution of the modulus of the displace-

ment at the location of the input force — over a frequency band [1Hz , 2000Hz].

For this purpose, the reduction method proposed in Section 3 is investigated. It

consists in dividing the whole periodic structure into one central structure having

N − 2 = 13 substructures, which is surrounded by two extra-substructures (Figure

3). The FRF of the whole structure is computed by considering different numbers
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m of right-going and left-going wave modes. The related results are displayed in

Figure 5 along with the reference FE solution, i.e., which is issued from a com-

mercial FE software. Here, a moderately dense mesh is used, leading to n = 22

DOFs over the left/right boundary of each substructure. As it can be seen, con-

sidering m = 2 right/left-going wave modes of the central structure is clearly not

enough. However, considering three or more wave modes (i.e., m ≥ 3) yields the

expected results with accurate precision. This might be explained by investigating

the first four propagation constants (see Table 1) — namely, µ1, µ2, µ3 and µ4 — at

2000Hz, among all the 22 propagation constants whose moduli are less than one.

Here, it appears that two waves are slowly damped, one is moderately decreasing

while the last one is strongly decreasing, i.e., the amplitude |µ4| is very small. This

means that the third wave mode should be kept, while the subsequent modes may

be ignored.

|µ1| |µ2| |µ3| |µ4|

0.999876 0.999704 0.387754 0.007128

Table 1: Modulus of the first propagation constants, at 2000Hz.

By considering the wave mode selection strategy proposed in Section 3.3, this

yields the same tendencies, i.e., the error bound Es is almost 140% when m = 2,

and less than 2% when m ≥ 3. For the sake of clarity, the true relative errors

between the WFE and FE solutions are displayed in Figure 6. As it can be seen,

the relative error of the WFE solution with m = 2 right/left-going wave modes

exceeds 100%, while that with m ≥ 3 wave modes is less than 5%, and even less

than 1% for most frequencies. This appears to be completely coherent with the

theoretical error bound Es, hence giving credit to the proposed reduction method.

To highlight further the efficiency of the reduction method, additional simula-
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Figure 5: FRF of the 2D periodic structure, as composed of a central periodic structure (13 substruc-

tures) surrounded by two extra-substructures: FE solution (—–), WFE solution when the central

periodic structure is modeled by means of m = 2 wave modes (− · −), m = 3 wave modes (×××)

and m = 4 wave modes (◦ ◦ ◦).

tions have been made, as follows.

Consider the case when the whole structure is partitioned into a left periodic

structure made up of N − 1 = 14 substructures, and a right extra substructure.

Assume that the periodic structure is modeled by means of a reduced number m

of right/left-going wave modes, while the right extra substructure is modeled by

means of the conventional FE method. The related FRF is displayed in Figure 7,

when different number m of wave modes are dealt with. As shown in Figure 7,

the WFE solution doesn’t match the reference FE curve even though half the wave

modes are kept (i.e., m = 11). Convergence is reached when all the wave modes

are kept, only. This highlights the fact that near the excitation source, almost the

full wave mode basis is needed to recover the dynamic behavior of the system.

Besides, a quite similar analysis is proposed by considering a right periodic
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Figure 6: Relative error of the WFE displacement solution, by considering a central periodic structure

(13 substructures) surrounded by two extra-substructures: (−·−) m = 2 wave modes; (×××) m = 3

wave modes; (◦ ◦ ◦) m = 4 wave modes; (• • •) m = n = 22 wave modes.

structure, with N − 1 = 14 substructures, and a left extra substructure. Again, it

is assumed that the periodic structure is modeled by means of a reduced number

m of right/left-going wave modes, while the left extra substructure is modeled by

means of the conventional FE method. The FRF of the whole periodic structure is

shown in Figure 8. In this case the convergence of the WFE solution is achieved

when half the wave modes are kept (i.e., m = 11). From this point of view, the

WFE method appears to be more accurate when compared to the last case, which

might be explained by the fact that the clamped BC is uniform over the right end

of the system, i.e., it can be described by means of a few low-order wave shapes.

Finally, Figure 9 highlights the results concerning a single periodic structure

withN = 15 substructures, modeled by means of a reduced numberm of right/left-

going wave modes, i.e., with no extra substructures. As expected, the accuracy of
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Figure 7: FRF of the 2D periodic structure, as composed of a left periodic structure (14 substructures)

coupled with a right extra substructure: FE solution (—–), WFE solution when the left periodic

structure is modeled by means of m = 3 wave modes (− · −), m = 11 wave modes (× × ×) and

m = n = 22 wave modes (◦ ◦ ◦).

the WFE method cannot be demonstrated whenm < n, meaning that the full wave

basis is required to ensure the convergence of the WFE solution.

To summarize, it has been highlighted that the fact to partition a whole periodic

structure into one central structure surrounded by two extra substructures yields an

efficient reduction method allowing the central structure to be described in terms

of a fairly small number of wave modes. Such a reduction method appears to be

very promising in terms of CPU time savings, especially when large-sized models

are dealt with. The relevance of the procedure is demonstrated in Section 4.3.
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Figure 8: FRF of the 2D periodic structure, as composed of a right periodic structure (14 sub-

structures) coupled with a left extra substructure: FE solution (—–), WFE solution when the right

periodic structure is modeled by means of m = 3 wave modes (−·−), m = 11 wave modes (×××)

and m = n = 22 wave modes (◦ ◦ ◦).

4.3. 3D periodic structure

As a second example, the harmonic behavior of a complex 3D periodic struc-

ture is analyzed by means of the WA approach (Section 3.2.3), over a frequency

band [0.5Hz , 150Hz]. The structure under concern consists in a stiffened cylin-

drical shell, as shown in Figure 10. It is composed of N = 20 identical substruc-

tures, each of these being made up of eighteen longitudinal flat stiffeners and one

circumferential L-shaped stiffener.

The cylindrical shell and the stiffeners share the following characteristics: Young’s

modulus of 70GPa, density of 2700kg/m3, Poisson’s ratio of 0.3, loss factor of

0.005, thickness of 0.002m. The length and the external diameter of the whole

structure are 10m and 3m, respectively. Also, the longitudinal stiffeners have a

height of 0.05m, while the circumferential L-shaped stiffener has a height and a
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Figure 9: FRF of the 2D periodic structure (N = 15 substructures) without extra substructures: FE

solution (—–), WFE solution when the periodic structure is modeled by means of m = 3 wave

modes (− · −), m = 11 wave modes (×××) and m = n = 22 wave modes (◦ ◦ ◦).

Figure 10: FE model of a stiffened cylindrical shell composed of 20 substructures.
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width of 0.1m. The substructures are meshed in a same manner, i.e., by means

of 2D triangular shell elements with three nodes and six DOFs per node that in-

corporate 3D displacements/rotations. As a whole, each substructure is meshed

using 32, 616 DOFs, which are partitioned into n = 1188 DOFs on each left/right

cross-section, and 30, 240 internal DOFs. Also, the total number of DOFs used to

model the whole periodic structure is 629, 748, which appears to be large. Such

a fine mesh is considered here with a view to correctly describing the local stress

fields which can be sharped in the vicinity of the corners between the shell and

the stiffeners [22, 23]. In fact, it will be proved below that the consideration of a

coarser mesh yields erroneous results.

Besides, the periodic structure is subject on its left end to vertical point forces

of magnitude F = 1000N acting in opposite directions on the cross-section DOFs

of two diametrically opposed longitudinal stiffeners (Figure 10). Regarding the

right end of the periodic structure, the cross-section DOFs of the longitudinal stiff-

eners are translationally fixed and rotationally free, while the cross-section DOFs

of the cylindrical shell are free. The FRF of the periodic structure is estimated

using 300 discrete frequencies which are equally spaced over the frequency band

[0.5Hz , 150Hz]. Prior to the computation of the wave modes, the condensed dy-

namic stiffness matrix D∗ of a substructure needs to be assessed at each discrete

frequency involved within the frequency band of concern. This is achieved using

the CB method (cf. Section 3.1), by considering 1000 fixed interface modes of

the substructure. The computation of the wave modes follows by considering the

eigenproblem (16). The Lanczos method enables one to compute a reduced set of

wave modes, only. For this purpose, the WA method proposed in Section 3.2.3 is

considered along with the wave mode selection process proposed in Section 3.3.

Here, the number of retained wave modes is determined when the value of the er-

ror bound Es shrinks under a tolerance threshold of 10%. This provides m = 125
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right/left-going wave modes to be retained, which represents almost 10% of the

total number n = 1188 of wave modes involved when the eigenproblem (16) is

solved directly. As a result, the computation of those few wave modes can be sped

up drastically.

The FRF of the periodic structure is displayed in Figure 11. Here, the magni-

tude of the radial displacement is assessed at a measurement point located 1.5m far

from the excitation sources, along the longitudinal direction. The solution issued

from the WA approach (Section 3.2.3) is computed using MATLAB R© and com-

pared to the solution issued from a conventional FE software. As it can be seen,

the WFE and FE solutions (black and violet curves) perfectly match to each other,

hence giving credit to the proposed approach. In terms of CPU times, it takes

around 5826s with the WFE method to compute the FRF of the structure using

MATLAB R© and an Intel R© CoreTM i7-3720QM processor, against 13, 618s with a

commercial FE software and the same processor. This means 57% time savings in

benefit of the WFE method.

Also, in Figure 11, the FRF which is issued from a coarse FE mesh of the

periodic structure is shown (red curve). In this case, the number of DOFs involved

is 195, 588 which appears to be three times less than that of the original mesh. As it

can be seen, large differences occur between the fine mesh- and coarse mesh-based

solutions, even at low frequencies. As was previously explained, this might be

explained since the coarse mesh fails to interpolate the stress fields around corners

— i.e., between the shell and the stiffeners — accurately. This gives credit to the

fine mesh proposed, and thus to the WFE method for modeling periodic structures

having large-sized FE models. To summarize, it is shown that the WFE method

constitutes an efficient numerical tool to assess the dynamic behavior of complex

periodic structures. In fact, the WFE method appears to be much faster than the FE

method, while keeping almost the same level of accuracy.
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Figure 11: FRF of the stiffened cylindrical shell (fine mesh): FE solution (—–) and WFE solution

when the central periodic structure is modeled by means of m = 125 wave modes (• • •); (coarse

mesh): FE solution (− · −).

Notice that the WFE method can be easily implemented on MATLAB R©, which

is partly explained since it invokes matrices of small sizes which not necessitate

excessive memory storage, as explained in Section 3.2.2. Additional comparisons

may be achieved with the CB method to highlight further the computational effi-

ciency of the proposed approach. Within the CB framework, the whole structure

is modeled by means of static modes and fixed-interface modes, understood that

the left and right cross-sections of the whole structure relate the fixed-interfaces.

Preliminary simulations have shown that almost 1000 fixed-interface modes are

required for modeling a single substructure, which means that at least the same

number is required for modeling the whole structure. This takes about 6, 800s to

compute these modes with a commercial FE software, which appear tremendous

compared to the total CPU times involved by the WFE method with MATLAB R©.
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5. Concluding remarks

A model reduction technique has been proposed within the framework of the

WFE method for the description of the dynamic behavior of structures with one-

dimensional periodicity. Two WFE-based procedures have been investigated for

this purpose — namely, the DSM and WA approaches — which make use of wave

modes for assessing the kinematic and mechanical fields of structures. An effi-

cient generalized eigenproblem based on the so-called S + S−1 transformation has

been proposed for computing the wave modes traveling in right and left directions

along a periodic structure composed of arbitrary-shaped substructures. To over-

come the issue of large CPU times when solving this eigenproblem directly, the

Lanczos method has been applied with a view to calculating a reduced number of

wave modes only. An error indicator has been proposed for selecting in an a priori

process those wave modes which mostly contribute to the structure dynamics. It

has been shown that the efficiency of the procedure can be greatly improved by

partitioning the whole periodic structure into one central structure surrounded by

two extra substructures. The feature of this technique lies in the use of a few wave

modes for modeling the central structure, hence enabling the CPU times associ-

ated to the computation of the WFE eigenproblem to be largely decreased. On the

other hand, the extra substructures are modeled using the conventional FE method.

The relevance of this reduction technique has been clearly validated regarding a

2D periodic structure. Also, it has been successfully applied to model a 3D peri-

odic stiffened shell that contains several substructures with large-sized FE models.

It has been shown that the proposed model reduction technique yields large CPU
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time savings compared to the conventional FE method.

Appendix A. Expression of the dynamic stiffness matrix of a periodic structure

Denote as u(1) and u(N+1) the 2n × 1 state vectors on the left and right ends

of a periodic structure composed of N substructures, expressed as

u(1) =

 q
(1)
L

−F
(1)
L

 , u(N+1) =

q
(N+1)
R

F
(N+1)
R

 . (A-1)

Those state vectors can be expanded onto the basis of wave modes as follows (cf.

Eq. (27))

u(1) = ΦQ + µNΦ?Q? , u(N+1) = µNΦQ + Φ?Q?, (A-2)

where Φ = [φ1, · · · ,φn] and Φ? = [φ?1, · · · ,φ?n]. Assume that the wave shapes

are normalized in the following sense φ?Tj Jφj = φTj Jφ?j = 1 ∀j. By considering

the orthogonality properties of the wave modes — i.e., φ?Tk Jφj = φTk Jφ?j = 0

∀k 6= j and φTk Jφj = φ?Tk Jφ?j = 0 ∀k [2] — it turns out that the wave amplitudes

can be expressed as follows:

Qj = φ?Tj Ju(1) , Q?j = φTj Ju(N+1) ∀j, (A-3)

and

µNj Qj = φ?Tj Ju(N+1) , µNj Q
?
j = φTj Ju(1) ∀j. (A-4)

This yields the following matrix relations that link the state vectors between the

left and right ends of the structure:

Φ?TJu(N+1) = µNΦ?TJu(1), (A-5)
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ΦTJu(1) = µNΦTJu(N+1). (A-6)

By partitioning the state vectors into displacement/rotation and force/moment com-

ponents (see Eq. (3)), this yields

−Φ?T
F q

(N+1)
R + Φ?T

q F
(N+1)
R = µN

(
−Φ?T

F q
(1)
L −Φ?T

q F
(1)
L

)
, (A-7)

−ΦT
F q

(1)
L −ΦT

q F
(1)
L = µN

(
−ΦT

F q
(N+1)
R + ΦT

q F
(N+1)
R

)
, (A-8)

that is,

µNΦ?T
q F

(1)
L + Φ?T

q F
(N+1)
R = −µNΦ?T

F q
(1)
L + Φ?T

F q
(N+1)
R , (A-9)

ΦT
q F

(1)
L + µNΦT

q F
(N+1)
R = −ΦT

F q
(1)
L + µNΦT

F q
(N+1)
R . (A-10)

In matrix form, Eqs. (A-9) and (A-10) are written asµNΦ?T
q Φ?T

q

ΦT
q µNΦT

q

 F
(1)
L

F
(N+1)
R

 =

−µNΦ?T
F Φ?T

F

−ΦT
F µNΦT

F

 q
(1)
L

q
(N+1)
R

 . (A-11)

It is worth noting that the matrix ΦF and Φ?
F can be expressed as follows:

ΦF = −
(
D∗LLΦq + D∗LRΦqµ

)
= D∗RRΦq + D∗RLΦqµ

?, (A-12)

Φ?
F = −

(
D∗LLΦ

?
q + D∗LRΦ

?
qµ

?
)

= D∗RRΦ
?
q + D∗RLΦ

?
qµ. (A-13)

Eqs. (A-12) and (A-13) are readily obtained from the dynamic equilibrium equa-

tion of a substructure, D∗ being the dynamic stiffness matrix of the substructure

condensed on its left and right ends (see Section 2.1). Introducing Eqs. (A-12) and

(A-13) into Eq. (A-11) leads toµNΦ?T
q Φ?T

q

ΦT
q µNΦT

q

 F
(1)
L

F
(N+1)
R

 (A-14)

=

µNΦ?T
q D∗LL + µN−1Φ?T

q D∗RL Φ?T
q D∗RR + µΦ?T

q D∗LR

ΦT
q D∗LL + µΦT

q D∗RL µNΦT
q D∗RR + µN−1ΦT

q D∗LR

 q
(1)
L

q
(N+1)
R


=

µNΦ?T
q Φ?T

q

ΦT
q µNΦT

q

 D∗LLq
(1)
L

D∗RRq
(N+1)
R

+

µN−1Φ?T
q µΦ?T

q

µΦT
q µN−1ΦT

q

 D∗RLq
(1)
L

D∗LRq
(N+1)
R


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Multiplying Eq. (A-14) by the inverse of the matrix occurring on its left-hand side

leads to F
(1)
L

F
(N+1)
R

 =

 D∗LLq
(1)
L

D∗RRq
(N+1)
R

+

(Φ?T
q )−1µNΦ?T

q In

In (ΦT
q )−1µNΦT

q

−1

×

(Φ?T
q )−1µN−1Φ?T

q (Φ?T
q )−1µΦ?T

q

(ΦT
q )−1µΦT

q (ΦT
q )−1µN−1ΦT

q

 D∗RLq
(1)
L

D∗LRq
(N+1)
R

 . (A-15)

As a result, the dynamic stiffness matrix of the periodic structure is expressed as

Ds =

D∗LL 0

0 D∗RR

+

(Φ?T
q )−1µNΦ?T

q In

In (ΦT
q )−1µNΦT

q

−1

×

(Φ?T
q )−1µN−1Φ?T

q (Φ?T
q )−1µΦ?T

q

(ΦT
q )−1µΦT

q (ΦT
q )−1µN−1ΦT

q

D∗RL 0

0 D∗LR

 . (A-16)

Alternatively, Ds can be expressed by taking the transpose of Eq. (A-16). Since

the matrix Ds is symmetric, this yields

Ds =

D∗LL 0

0 D∗RR

+

D∗LR 0

0 D∗RL

 (A-17)

×

Φ?
qµ

N−1Φ?−1
q ΦqµΦ−1q

Φ?
qµΦ?−1

q Φqµ
N−1Φq−1

Φ?
qµ

NΦ?−1
q In

In Φqµ
NΦ−1q

−1 .

Appendix B. Expression of the boundary conditions in case of a periodic struc-

ture connected to two elastic subsystems

Consider a periodic structure whose left and right ends are connected to two

elastic subsystems 1 and 2 as shown in Figure 2. Here, the subsystems 1 and 2

undergo prescribed displacements/rotations (vectors q0 and q?0, respectively) and
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prescribed forces/moments (vectors F0 and F?
0, respectively). Also, due to action-

reaction law, the subsystems are subject to vectors of forces/moments −F
(1)
L and

−F
(N+1)
R , respectively, on the coupling interfaces with the periodic structure. As a

result, the dynamic equilibrium of each subsystem can be expressed in matrix form

as follows

• Subsystem 1:
(D1)LL (D1)LI (D1)LB

(D1)IL (D1)II (D1)IB

(D1)BL (D1)BI (D1)BB




qL

q1I

q0

 =


−F

(1)
L

F0

F1B

 , (B-1)

• Subsystem 2:
(D2)RR (D2)RI (D2)RB

(D2)IR (D2)II (D2)IB

(D2)BR (D2)BI (D2)BB




qR

q2I

q?0

 =


−F

(N+1)
R

F?
0

F2B

 . (B-2)

Here, D1 and D2 refer to the dynamic stiffness matrices of the subsystems 1 and

2, respectively. Also, the subscripts L (resp. R) refer to the DOFs of the subsys-

tem 1 (resp. subsystem 2) which belong to the coupling interface; the subscript I

denotes the internal DOFs where prescribed forces/moments (vectors F0 and F?
0)

occur, while the subscript B denotes the boundary DOFs where prescribed displace-

ments/rotations (vectors q0 and q?0) occur. By considering the first block rows of

the matrix systems (B-1) and (B-2), this yields

(D1)LLqL + (D1)LIq1I + (D1)LBq0 = −F
(1)
L , (B-3)

(D2)RRqR + (D2)RIq2I + (D2)RBq
?
0 = −F

(N+1)
R . (B-4)

Also, by considering the second block rows of the matrix systems (B-1) and (B-2),

the vectors q1I and q2I are readily expressed as

q1I = (D1)
−1
II [F0 − (D1)ILqL − (D1)IBq0], (B-5)

47



q2I = (D2)
−1
II [F?

0 − (D2)IRqR − (D2)IBq
?
0]. (B-6)

Introducing Eqs. (B-5) and (B-6) into Eqs. (B-3) and (B-4) yields the expected

results, i.e.,

−F
(1)
L = Dq

(1)
L +Dqq0+DFF0 , −F

(N+1)
R = D?q(N)

R +D?qq?0+D?FF?
0, (B-7)

where

D = [(D1)LL − (D1)LI(D1)
−1
II (D1)IL], (B-8)

Dq = [(D1)LB − (D1)LI(D1)
−1
II (D1)IB], (B-9)

DF = (D1)LI(D1)
−1
II , (B-10)

and

D? = [(D2)RR − (D2)RI(D2)
−1
II (D2)IR], (B-11)

D?q = [(D2)RB − (D2)RI(D2)
−1
II (D2)IB], (B-12)

D?F = (D2)RI(D2)
−1
II . (B-13)
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