29,154 research outputs found

    A 6D interferometric inertial isolation system

    Full text link
    We present a novel inertial-isolation scheme based on six degree-of-freedom (6D) interferometric sensing of a single reference mass. It is capable of reducing inertial motion by more than two orders of magnitude at 100\,mHz compared with what is achievable with state-of-the-art seismometers. This will enable substantial improvements in the low-frequency sensitivity of gravitational-wave detectors. The scheme is inherently two-stage, the reference mass is softly suspended within the platform to be isolated, which is itself suspended from the ground. The platform is held constant relative to the reference mass and this closed-loop control effectively transfers the low acceleration-noise of the reference mass to the platform. A high loop gain also reduces non-linear couplings and dynamic range requirements in the soft-suspension mechanics and the interferometric sensing

    Twist-bend instability for toroidal DNA condensates

    Full text link
    We propose that semiflexible polymers in poor solvent collapse in two stages. The first stage is the well known formation of a dense toroidal aggregate. However, if the solvent is sufficiently poor, the condensate will undergo a second structural transition to a twisted entangled state, in which individual filaments lower their bending energy by additionally orbiting around the mean path along which they wind. This ``topological ripening'' is consistent with known simulations and experimental results. It connects and rationalizes various experimental observations ranging from strong DNA entanglement in viral capsids to the unusually short pitch of the cholesteric phase of DNA in sperm-heads. We propose that topological ripening of DNA toroids could improve the efficiency and stability of gene delivery.Comment: 4 pages, 3 figures, RevTeX4 styl

    Ultrafast dynamics of finite Hubbard clusters - a stochastic mean-field approach

    Full text link
    Finite lattice models are a prototype for strongly correlated quantum systems and capture essential properties of condensed matter systems. With the dramatic progress in ultracold atoms in optical lattices, finite fermionic Hubbard systems have become directly accessible in experiments, including their ultrafast dynamics far from equilibrium. Here, we present a theoretical approach that is able to treat these dynamics in any dimension and fully includes inhomogeneity effects. The method consists in stochastic sampling of mean-field trajectories and is found to be more accurate and efficient than current nonequilibrium Green functions approaches. This is demonstrated for Hubbard clusters with up to 512 particles in one, two and three dimensions

    Novel Radiation-induced Magnetoresistance Oscillations in a Nondegenerate 2DES on Liquid Helium

    Full text link
    We report the observation of novel magnetoresistance oscillations induced by the resonant inter-subband absorption in nondegenerate 2D electrons bound to the surface of liquid helium. The oscillations are periodic in 1/B and originate from the scattering-mediated transitions of the excited electrons into the Landau states of the first subband. The structure of the oscillations is affected by the collision broadening of the Landau levels and by many-electron effects.Comment: 4 figure

    Identifying Native Applications with High Assurance

    Get PDF
    The work described in this paper investigates the problem of identifying and deterring stealthy malicious processes on a host. We point out the lack of strong application iden- tication in main stream operating systems. We solve the application identication problem by proposing a novel iden- tication model in which user-level applications are required to present identication proofs at run time to be authenti- cated by the kernel using an embedded secret key. The se- cret key of an application is registered with a trusted kernel using a key registrar and is used to uniquely authenticate and authorize the application. We present a protocol for secure authentication of applications. Additionally, we de- velop a system call monitoring architecture that uses our model to verify the identity of applications when making critical system calls. Our system call monitoring can be integrated with existing policy specication frameworks to enforce application-level access rights. We implement and evaluate a prototype of our monitoring architecture in Linux as device drivers with nearly no modication of the ker- nel. The results from our extensive performance evaluation shows that our prototype incurs low overhead, indicating the feasibility of our model
    corecore