29,154 research outputs found
A 6D interferometric inertial isolation system
We present a novel inertial-isolation scheme based on six degree-of-freedom
(6D) interferometric sensing of a single reference mass. It is capable of
reducing inertial motion by more than two orders of magnitude at 100\,mHz
compared with what is achievable with state-of-the-art seismometers. This will
enable substantial improvements in the low-frequency sensitivity of
gravitational-wave detectors. The scheme is inherently two-stage, the reference
mass is softly suspended within the platform to be isolated, which is itself
suspended from the ground. The platform is held constant relative to the
reference mass and this closed-loop control effectively transfers the low
acceleration-noise of the reference mass to the platform. A high loop gain also
reduces non-linear couplings and dynamic range requirements in the
soft-suspension mechanics and the interferometric sensing
Twist-bend instability for toroidal DNA condensates
We propose that semiflexible polymers in poor solvent collapse in two stages.
The first stage is the well known formation of a dense toroidal aggregate.
However, if the solvent is sufficiently poor, the condensate will undergo a
second structural transition to a twisted entangled state, in which individual
filaments lower their bending energy by additionally orbiting around the mean
path along which they wind. This ``topological ripening'' is consistent with
known simulations and experimental results. It connects and rationalizes
various experimental observations ranging from strong DNA entanglement in viral
capsids to the unusually short pitch of the cholesteric phase of DNA in
sperm-heads. We propose that topological ripening of DNA toroids could improve
the efficiency and stability of gene delivery.Comment: 4 pages, 3 figures, RevTeX4 styl
Ultrafast dynamics of finite Hubbard clusters - a stochastic mean-field approach
Finite lattice models are a prototype for strongly correlated quantum systems
and capture essential properties of condensed matter systems. With the dramatic
progress in ultracold atoms in optical lattices, finite fermionic Hubbard
systems have become directly accessible in experiments, including their
ultrafast dynamics far from equilibrium. Here, we present a theoretical
approach that is able to treat these dynamics in any dimension and fully
includes inhomogeneity effects. The method consists in stochastic sampling of
mean-field trajectories and is found to be more accurate and efficient than
current nonequilibrium Green functions approaches. This is demonstrated for
Hubbard clusters with up to 512 particles in one, two and three dimensions
Novel Radiation-induced Magnetoresistance Oscillations in a Nondegenerate 2DES on Liquid Helium
We report the observation of novel magnetoresistance oscillations induced by
the resonant inter-subband absorption in nondegenerate 2D electrons bound to
the surface of liquid helium. The oscillations are periodic in 1/B and
originate from the scattering-mediated transitions of the excited electrons
into the Landau states of the first subband. The structure of the oscillations
is affected by the collision broadening of the Landau levels and by
many-electron effects.Comment: 4 figure
Identifying Native Applications with High Assurance
The work described in this paper investigates the problem
of identifying and deterring stealthy malicious processes on
a host. We point out the lack of strong application iden-
tication in main stream operating systems. We solve the
application identication problem by proposing a novel iden-
tication model in which user-level applications are required
to present identication proofs at run time to be authenti-
cated by the kernel using an embedded secret key. The se-
cret key of an application is registered with a trusted kernel
using a key registrar and is used to uniquely authenticate
and authorize the application. We present a protocol for
secure authentication of applications. Additionally, we de-
velop a system call monitoring architecture that uses our
model to verify the identity of applications when making
critical system calls. Our system call monitoring can be
integrated with existing policy specication frameworks to
enforce application-level access rights. We implement and
evaluate a prototype of our monitoring architecture in Linux
as device drivers with nearly no modication of the ker-
nel. The results from our extensive performance evaluation
shows that our prototype incurs low overhead, indicating the
feasibility of our model
- …