185 research outputs found
Formation of even-numbered hydrogen cluster cations in ultracold helium droplets
Neutral hydrogen clusters are grown in ultracold helium nanodroplets by successive pickup of hydrogen molecules. Even-numbered hydrogen cluster cations are observed upon electron-impact ionization with and without attached helium atoms and in addition to the familiar odd-numbered H(n)(+). The helium matrix affects the fragmentation dynamics that usually lead to the formation of overwhelmingly odd-numbered H(n)(+). The use of high-resolution mass spectrometry allows the unambiguous identification of even-numbered H(n)(+) up to n congruent to 120 by their mass excess that distinguishes them from He(n)(+), mixed He(m)H(n)(+), and background ions. The large range in size of these hydrogen cluster ions is unprecedented, as is the accuracy of their definition. Apart from the previously observed magic number n = 6, pronounced drops in the abundance of even-numbered cluster ions are seen at n = 30 and 114, which suggest icosahedral shell closures at H(6)(+)(H(2))(12) and H(6)(+)(H(2))(54). Possible isomers of H(6)(+) are identified at the quadratic configuration interaction with inclusion of single and double excitations (QCISD)/aug-cc-pVTZ level of theory (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3035833
Metastable anions of dinitrobenzene: resonances for electron attachment and kinetic energy release
Attachment of free, low-energy electrons to dinitrobenzene (DNB) in the gas phase leads to DNB as well as several fragment anions. DNB, (DNB-H), (DNB-NO), (DNB-2NO), and (DNB-NO(2)) are found to undergo metastable (unimolecular) dissociation. A rich pattern of resonances in the yield of these metastable reactions versus electron energy is observed; some resonances are highly isomer-specific. Most metastable reactions are accompanied by large average kinetic energy releases (KER) that range from 0.5 to 1.32 eV, typical of complex rearrangement reactions, but (1,3-DNB-H)(-) features a resonance with a KER of only 0.06 eV for loss of NO. (1,3-DNB-NO)(-) offers a rare example of a sequential metastable reaction, namely, loss of NO followed by loss of CO to yield C(5)H(4)O(-) with a large KER of 1.32 eV. The G4(MP2) method is applied to compute adiabatic electron affinities and reaction energies for several of the observed metastable channels. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514931
Low-energy electron-induced decomposition of 5-trifluoromethanesulfonyl-uracil: A potential radiosensitizer
Grant Nos. PD/BD/114447/2016 and PD/BD/114452/2016.
researcher position No. IF-FCT IF/00380/2014.
Doctoral Training Programme (RaBBiT, PD/00193/2012).
S.D. acknowledges support from FWF (P30332).
Polish National Science Center (NCN) under the Grant No. UMO-2014/14/A/ST4/00405 (J. R.).5-trifluoromethanesulfonyl-uracil (OTfU), a recently proposed radiosensitizer, is decomposed in the gas-phase by attachment of low-energy electrons. OTfU is a derivative of uracil with a triflate (OTf) group at the C5-position, which substantially increases its ability to undergo effective electron-induced dissociation. We report a rich assortment of fragments formed upon dissociative electron attachment (DEA), mostly by simple bond cleavages (e.g., dehydrogenation or formation of OTf-). The most favorable DEA channel corresponds to the formation of the triflate anion alongside with the reactive uracil-5-yl radical through the cleavage of the O-C5 bond, particularly at about 0 eV. Unlike for halouracils, the parent anion was not detected in our experiments. The experimental findings are accounted by a comprehensive theoretical study carried out at the M06-2X/aug-cc-pVTZ level. The latter comprises the thermodynamic thresholds for the formation of the observed anions calculated under the experimental conditions (383.15 K and 3 × 10-11 atm). The energy-resolved ion yield of the dehydrogenated parent anion, (OTfU-H)-, is discussed in terms of vibrational Feshbach resonances arising from the coupling between the dipole bound state and vibrational levels of the transient negative ion. We also report the mass spectrum of the cations obtained through ionization of OTfU by electrons with a kinetic energy of 70 eV. The current study endorses OTfU as a potential radiosensitizer agent with possible applications in radio-chemotherapy.publishersversionpublishe
Fragmentation patterns of 4(5)-nitroimidazole and 1-methyl-5-nitroimidazole - The effect of the methylation
We present here the photofragmentation patterns of doubly ionized 4(5)-nitroimidazole and 1-methyl-5-nitroimidazole. The doubly ionized state was created by core ionizing the C 1s orbitals of the samples, rapidly followed by Auger decay. Due to the recent development of nitroimidazole-based radiosensitizing drugs, core ionization was selected as it represents the very same processes taking place under the irradiation with medical X-rays. In addition to the fragmentation patterns of the sample, we study the effects of methylation on the fragmentation patterns of nitroimidazoles. We found that methylation alters the fragmentation significantly, especially the charge distribution between the final fragments. The most characteristic feature of the methylation is that it effectively quenches the production of NO and NO+, widely regarded as key radicals in the chemistry of radiosensitization by the nitroimidazoles
- …