32 research outputs found
Pressure-dependent optical investigations of -(BEDT-TTF)I: tuning charge order and narrow gap towards a Dirac semimetal
Infrared optical investigations of -(BEDT-TTF)I have been
performed in the spectral range from 80 to 8000~cm down to temperatures
as low as 10~K by applying hydrostatic pressure. In the metallic state, ~K, we observe a 50\% increase in the Drude contribution as well as the
mid-infrared band due to the growing intermolecular orbital overlap with
pressure up to 11~kbar. In the ordered state, , we extract how
the electronic charge per molecule varies with temperature and pressure:
Transport and optical studies demonstrate that charge order and metal-insulator
transition coincide and consistently yield a linear decrease of the transition
temperature by ~K/kbar. The charge disproportionation
diminishes by /kbar and the optical gap between
the bands decreases with pressure by -47~cm/kbar. In our high-pressure
and low-temperature experiments, we do observe contributions from the massive
charge carriers as well as from massless Dirac electrons to the low-frequency
optical conductivity, however, without being able to disentangle them
unambiguously.Comment: 13 pages, 17 figures, submitted to Phys. Rev.
COVID-19 and Intracranial Hemorrhage: A Multicenter Case Series, Systematic Review and Pooled Analysis
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) profoundly impacts hemostasis and microvasculature. In the light of the dilemma between thromboembolic and hemorrhagic complications, in the present paper, we systematically investigate the prevalence, mortality, radiological subtypes, and clinical characteristics of intracranial hemorrhage (ICH) in coronavirus disease (COVID-19) patients. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a systematic review of the literature by screening the PubMed database and included patients diagnosed with COVID-19 and concomitant ICH. We performed a pooled analysis, including a prospectively collected cohort of critically ill COVID-19 patients with ICH, as part of the PANDEMIC registry (Pooled Analysis of Neurologic Disorders Manifesting in Intensive Care of COVID-19). Results: Our literature review revealed a total of 217 citations. After the selection process, 79 studies and a total of 477 patients were included. The median age was 58.8 years. A total of 23.3% of patients experienced the critical stage of COVID-19, 62.7% of patients were on anticoagulation and 27.5% of the patients received ECMO. The prevalence of ICH was at 0.85% and the mortality at 52.18%, respectively. Conclusion: ICH in COVID-19 patients is rare, but it has a very poor prognosis. Different subtypes of ICH seen in COVID-19, support the assumption of heterogeneous and multifaceted pathomechanisms contributing to ICH in COVID-19. Further clinical and pathophysiological investigations are warranted to resolve the conflict between thromboembolic and hemorrhagic complications in the future
Structure and in vivo requirement of the yeast Spt6 SH2 domain.
During transcription elongation through chromatin, the Ser2-phosphorylated C-terminal repeat domain of RNA polymerase II binds the C-terminal Src homology 2 (SH2) domain of the nucleosome re-assembly factor Spt6. This SH2 domain is unusual in its specificity to bind phosphoserine, rather than phosphotyrosine and because it is the only SH2 domain in the yeast genome. Here, we report the high-resolution crystal structure of the SH2 domain from Candida glabrata Spt6. The structure combines features from both structural subfamilies of SH2 domains, suggesting it resembles a common ancestor of all SH2 domains. Two conserved surface pockets deviate from those of canonical SH2 domains, and may explain the unusual phosphoserine specificity. Differential gene expression analysis reveals that the SH2 domain is required for normal expression of a subset of yeast genes, and is consistent with multiple functions of Spt6 in chromatin transcription
Structural basis of transcription: Mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA
We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNA,RNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a T,U mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal ion and misaligns the RNA30 end. The mismatch can also stabilize a paused state of Pol II with a frayed RNA 30 nucleotide. The frayed nucleotide binds in the Pol II pore either parallel or perpendicular to the DNA-RNA hybrid axis (fraying sites I and II, respectively) and overlaps the nucleoside triphosphate (NTP) site, explaining how it halts transcription during proofreading, before backtracking and RNA cleavage