86 research outputs found

    Oscillation and global attractivity in a nonlinear delay difference equation

    Get PDF

    The persistent impact of drought stress on the resilience of summer maize

    Get PDF
    Crop resilience refers to the adaptive ability of crops to resist drought at a certain level. Currently, most of the research focuses on the changes in root or photosynthesis traits of crops after drought and rehydration. Still, the persistence effect (drought period (T2) - rehydration period (T3) - harvest period (T4)) of drought stress on crops and quantitative estimation of resilience is still unclear. Field experiments were conducted in this study to determine the persistence effects on above-ground and below-ground growth indicators of summer maize at different levels and durations of drought. Next, an evaluation method for integrated resilience of summer maize was proposed, and a quantitative assessment of integrated resilience was made by Principal Component Analysis (PCA) and resilience index calculation. The results showed that the resilience of summer maize decreased with increasing drought levels, which persisted until harvest. Although summer maize resilience was strong after rewatering under light drought (DR1), declined after sustained rewatering. At the same time, production had decreased. However, a specific drought duration could improve the resilience of summer maize under light drought conditions. In particular, leaf biomass and root growth in the 30-50 cm layer could be enhanced under long duration light drought (LDR1), thus improving summer maize resilience and yield. Thus, under water shortage conditions, a certain level and duration drought could improve the resilience and yield of summer maize, which would persist until harvest. Clarifying the persistent effects on the growth indicators of summer maize and quantitatively evaluating the resilience of summer maize could improve agricultural food production and water use efficiency

    Modified Palmer Drought Severity Index Based on Distributed Hydrological Simulation

    Get PDF
    Drought monitoring at large scale is essential for fighting against drought. Aiming at the limitation of acquiring long-time serial soil moisture and actual evapotranspiration for Palmer drought severity index (PDSI), the paper modified the PDSI based on distributed hydrological model on subbasin level in Luanhe river basin, North China. The water balance was simulated using the Soil and Water Assessment Tool (SWAT). Calibration and validation results showed good agreement between simulated and measured discharges, and the SWAT model can be used to predict hydrological processes in the study area. Then the simulation results of main hydrologic components were used to establish PDSI. The verification of the drought indices showed that the modified PDSI based on SWAT model and Palmer drought severity index could better describe the characteristics of regional drought evolution in the Luanhe river basin. High drought frequency areas were mainly distributed in the grassland regions of upstream located in the eastern part of Inner Mongolia plateau, and the drought area had a significant upward trend form 1973 to 2010. Compared with the traditional Palmer drought severity index, the modified PDSI could reflect the spatial heterogeneity of regional drought and improve the physical mechanism of PDSI. The drought monitoring method can provide technical support for comprehensive understanding of drought and effective preventing and relieving of drought disasters

    Standardized Water Budget Index and Validation in Drought Estimation of Haihe River Basin, North China

    Get PDF
    The physical-based drought indices such as the self-calibrated Palmer Drought Severity Index (sc-PDSI) with the fixed time scale is inadequate for the multiscalar drought assessment, and the multiscalar drought indices including Standardized Precipitation Index (SPI), Reconnaissance Drought Index (RDI), and Standardized Precipitation Evapotranspiration Index (SPEI) based on the meteorological factors are lack of physical mechanism and cannot depict the actual water budget. To fill this gap, the Standardized Water Budget Index (SWBI) is constructed based on the difference between areal precipitation and actual evapotranspiration (AET), which can describe the actual water budget but also assess the drought at multiple time scales. Then, sc-PDSI was taken as the reference drought index to compare with multiscalar drought indices at different time scale in Haihe River basin. The result shows that SWBI correlates better with sc-PDSI and the RMSE of SWBI is less than other multiscalar drought indices. In addition, all of drought indices show a decreasing trend in Haihe River Basin, possibly due to the decreasing precipitation from 1961 to 2010. The decreasing trends of SWBI were significant and consistent at all the time scales, while the decreasing trends of other multiscalar drought indices are insignificant at time scale less than 3 months

    Model estimates of China's terrestrial water storage variation due to reservoir operation

    Get PDF
    Understanding the role of reservoirs in the terrestrial water cycle is critical to support the sustainable management of water resources especially for China where reservoirs have been extensively built nationwide. However, this has been a scientific challenge due to the limited availability of continuous, long-term reservoir operation records at large scales, and a process-based modeling tool to accurately depict reservoirs as part of the terrestrial water cycle is still lacking. Here, we develop a continental-scale land surface-hydrologic model over the mainland China by explicitly representing 3,547 reservoirs in the model with a calibration-free conceptual operation scheme for ungauged reservoirs and a hydrodynamically based two-way coupled scheme. The model is spatially calibrated and then extensively validated against streamflow observations, reservoir storage observations and GRACE-based terrestrial water storage anomalies. A 30-year simulation is then performed to quantify the seasonal dynamics of China’s reservoir water storage (RWS) and its role in China\u27s terrestrial water storage (TWS) over recent decades. We estimate that, over a seasonal cycle, China\u27s RWS variation is 15%, 16%, and 25% of TWS variation during 1981–1990, 1991–2000, and 2001–2010, respectively, and one-fifth of China’s reservoir capacity are effectively used annually. In most regions, reservoirs play a growing role in modulating the water cycle over time. Despite that, an estimated 80 million people have faced increasing water resources challenges in the past decades due to the significantly weakened reservoir regulation of the water cycle. Our approaches and findings could help the government better address the water security challenges under environmental changes

    Ensuring water resource security in China; the need for advances in evidence based policy to support sustainable management.

    Get PDF
    China currently faces a water resource sustainability problem which is likely to worsen into the future. The Chinese government is attempting to address this problem through legislative action, but faces severe challenges in delivering its high ambitions. The key challenges revolve around the need to balance water availability with the need to feed a growing population under a changing climate and its ambitions for increased economic development. This is further complicated by the complex and multi-layered government departments, often with overlapping jurisdictions, which are not always aligned in their policy implementation and delivery mechanisms. There remain opportunities for China to make further progress and this paper reports on the outcomes of a science-to-policy roundtable meeting involving scientists and policy-makers in China. It identifies, in an holistic manner, new opportunities for additional considerations for policy implementation, continued and new research requirements to ensure evidence-based policies are designed and implemented and identifies the needs and opportunities to effectively monitor their effectiveness. Other countries around the world can benefit from assessing this case study in China

    Changes of pan evaporation and its influence factors in China

    Get PDF
    Evaporation is an important component both in surface energy balance and terrestrial water cycle, and it is also a key factor determining weather and climate conditions. It plays a significant role in the studies of water and energy balance within a certain area and estimations of water resources. In this study, based on pan evaporation data and their variation trends from 499 stations in China, the correlations between evaporation and various influence factors, including the amount of precipitation, temperature, wind speed, sunshine duration and relative humidity, were studied in depth by means of correlation analysis and set pair analysis methods. The analysis results indicated that there was a decline of pan evaporation in both of the whole China and its seven major river basins, and it has decreased significantly since mid-1970s, mainly due to the decreasing sunshine duration and wind speed. In addition, increased precipitation and relative humidity may inhibit the reduction to a certain degree. In most regions of China, temperature change presented a contrary trend compared with the variation of evaporation, as described in \u27evaporation paradox\u27; however, the correlation between them was not very striking, which implied that the variation of water surface evaporation was slightly affected by temperature
    • …
    corecore