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The physical-based drought indices such as the self-calibrated Palmer Drought Severity Index (sc-PDSI) with the fixed time scale
is inadequate for the multiscalar drought assessment, and the multiscalar drought indices including Standardized Precipitation
Index (SPI), Reconnaissance Drought Index (RDI), and Standardized Precipitation Evapotranspiration Index (SPEI) based on the
meteorological factors are lack of physical mechanism and cannot depict the actual water budget. To fill this gap, the Standardized
Water Budget Index (SWBI) is constructed based on the difference between areal precipitation and actual evapotranspiration (AET),
which can describe the actual water budget but also assess the drought at multiple time scales. Then, sc-PDSI was taken as the
reference drought index to compare with multiscalar drought indices at different time scale in Haihe River basin. The result shows
that SWBI correlates better with sc-PDSI and the RMSE of SWBI is less than other multiscalar drought indices. In addition, all of
drought indices show a decreasing trend in Haihe River Basin, possibly due to the decreasing precipitation from 1961 to 2010. The
decreasing trends of SWBI were significant and consistent at all the time scales, while the decreasing trends of other multiscalar
drought indices are insignificant at time scale less than 3 months.

1. Introduction

Drought is a complex and prolonged natural hazard affecting
hydrological cycle, agriculture, environment, and economic
development strongly [1–3]. Droughts have occurred over
most parts of world, in both humid and arid region [4].
Therefore, much effort has been devoted to drought analysis,
particularly in drought index, which is necessary to drought
monitor, prediction, and management.

Many drought indices have been constructed in the last
half century [3, 5, 6]. The Palmer Drought Severity Index
(PDSI) [7] and the Standardized Precipitation Index (SPI)
[8] are applied broadly. PDSI derived from a simple water
balance model can identify the supply-demand dynamics
and measure both drought and wet condition [9]. How-
ever, the PDSI values are not comparable between diverse
climate regions. Therefore, in order to improve the spatial

comparability of PDSI, Wells et al. [10] developed the self-
calibrated Palmer Drought Severity Index (sc-PDSI), which
can demonstrate the severity of droughts across different
climate regions and has become a standard for drought
assessment [10]. Yet sc-PDSI is a fixed time scale drought
index and drought is a multiscalar phenomenon [1]; thus
drought indices should be related to a specific time scale for
monitoring and assessing different droughts. For this reason,
although SPI is merely dependent on precipitation, SPI has
been widely used due to the less input, easy calculation,
and multiscalar character. Furthermore, in order to take
the other climate factors into consideration, the potential
evapotranspiration (PET) was added into SPI. Subsequently,
the Reconnaissance Drought Index (RDI) [11, 12] and the
Standardized Precipitation Evapotranspiration Index (SPEI)
[1] were developed and widely used in different climate
regions of the world. Nevertheless, the RDI is inadequate
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in cold regions, where the potential evapotranspiration is
approximately equal to 0 [13]. On the other hand, although
the difference between precipitation and PET can represent
the drought/wet condition to some extent, the deviation
between PET and actual evapotranspiration (AET)makes the
SPEI be insufficient to depict the actual regional water budget
and results in an uncertain influence on drought assessment
[13, 14].

Although these drought indices (sc-PDSI, SPI, RDI,
and SPEI) have been popularly used for drought assess-
ment over the world, there are some limitations to their
applications. (1) The physical-based drought indices such
as sc-PDSI can accurately represent the water budget, yet
the fixed time scale of sc-PDSI is inadequate for the mul-
tiscalar drought assessment. (2) The multiscalar drought
indices (SPI, RDI, and SPEI) based on the meteorological
factors are lack of physical mechanism and cannot depict
the actual water budget. Therefore, it is necessary to con-
struct a Standardized Water Budget Index (SWBI), which
can describe the actual water budget between AET and
precipitation but also assess the drought at multiple time
scales.

Haihe River basin is a drought-prone region with sev-
eral prolonged drought events [2] and the drought here
has become an obstacle to the development of socioeco-
nomic system, environment system, and ecosystem [15].
The objectives of this paper are to (1) construct SWBI
based on the actual water budget between AET and pre-
cipitation and (2) validate SWBI in comparison with other
multiscalar drought indices and sc-PDSI in Haihe River
basin. The remaining parts of the study are as follows:
basic information of Haihe River basin is introduced firstly.
Next, data sources and methods are illustrated in Sec-
tion 3. Section 4 displays the calculation procedure of
SWBI. Then the results and discussion are given out in
Section 5. Finally, the conclusions are briefly presented in
Section 6.

2. Study Area

According to the typical monsoon climate and diverse under-
lying surface system, China is a drought-prone country in the
past half century, particularly in North China Plain [14, 16].
Haihe River basin located in the North of China consists of
Luanhe watershed, Haihe watershed, and Tuhai-Majia River
watershed (Figure 1). It is surrounded by Taihang Mountain
in the west, Bohai Sea in the east, Mongolian Plateau in
the north, and Yellow River in the south, and the area of
basin is about 3.2 × 105 km2. Haihe River basin extends from
semiarid region in the north to semihumid region in the
south with the average annual areal precipitation of 530mm
and potential evapotranspiration of 960mm during 1961–
2010. The monthly distribution of precipitation and PET
are shown in Figure 2, which illustrates that the monthly
precipitation distribution is uneven and more than 70% of
annual precipitation is concentrated in July to September,
which makes the Haihe River basin a drought-prone region.
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Figure 1: Topographic distribution of Haihe River basin and loca-
tion of meteorological stations.
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Figure 2: Average monthly areal precipitation and PET in Haihe
River basin during 1961–2010.

3. Data and Methods

3.1. Data Sources. The daily meteorological data (consisting
of precipitation; minimum, maximum, and average tempera-
ture; average wind speed; sunshine hours; relative humidity)
of 52 stations (Figure 1) from January 1961 to December
2010 were originally acquired from China Meteorological
Data Sharing Service System (http://cdc.nmic.cn/home.do).
Based on the daily meteorological data, the daily potential
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evapotranspiration (PET) was calculated through Penman-
Monteith equation (FAO.56 P-M equation), which is an effi-
cient physical-based method and has been used to estimate
the potential evapotranspiration in Haihe River basin [17].
Accordingly the monthly and annual precipitation and PET
were accumulated from the daily precipitation and PET at
station scale. Moreover, monthly precipitation and PET of
52 stations were interpolated into 1 × 1 km grids over the
Haihe River basin by the Kriging interpolation. Finally, the
monthly areal precipitation and PET were obtained based
on the average monthly precipitation and PET of all grids
in Haihe River basin from January 1961 to December 2010,
and annual areal precipitation and PET were accumulated
from the monthly areal precipitation and PET. Consequently,
annual areal AET was calculated via Budyko equation based
on the annual areal precipitation and PET; monthly AET was
obtained according to the monthly areal precipitation and
evapotranspiration coefficient.

3.2. Kolmogorov-Smirnov Test. The statistic𝐷
𝑛
(K-SD) value

given by Kolmogorov-Smirnov (K-S) test [18, 19] is a simple
and efficient method to test whether a variable series comes
from some completely specified distribution, which is applied
to identify a suitable distribution for the water budget. It is a
nonparametric test well-known as follows:

𝐷
𝑛
= max 󵄨󵄨󵄨

󵄨
𝐹 (𝑥
𝑖
) − 𝑆 (𝑥

𝑖
)
󵄨
󵄨
󵄨
󵄨

𝑖 = 1, 2, . . . , 𝑛, (1)

where 𝑥
𝑖
is the variable series to be test; 𝑆(𝑥

𝑖
) is the sample

empirical cumulative distribution function; and 𝐹(𝑥
𝑖
) is the

theoretical cumulative distribution function estimated from
the samples.

3.3. Statistic Indices. Pearson correlation coefficient (PCC;
see (2)) and Root Mean Square Error (RMSE; see (3)) were
employed to analyze the relation and difference between
multiscalar drought indices and sc-PDSI at different time
scales and expressed as follows:

PCC =

cov (𝑥, 𝑦)

√Var (𝑥)√Var (𝑦)
, (2)

RMSE = √
∑
𝑛

𝑖=1
(𝑥 − 𝑦)

2

𝑛

,
(3)

where 𝑥 presents the variable series of multiscalar drought
indices, 𝑦 presents the series of sc-PDSI, and 𝑛 is the length
of the data series (𝑛 = 600).

3.4. Mann-Kendall Trend Test. As a nonparametric test
method recommended by theWorld Meteorological Organi-
zation, Mann-Kendall trend test (M-K trend test) [20, 21] is

widely used in meteorology, hydrology, and climatology [22].
The test statistic 𝑈 is established:

𝑈 =

𝜏

√Var (𝜏)
,

𝜏 =

4𝑝

√𝑛 (𝑛 − 1)

− 1,

𝑝 =

𝑘

∑

𝑖=1

𝑖−1

∑

𝑗

𝑎
𝑖𝑗
, (𝑘 = 2, 3, . . . , 𝑛) ,

𝑎
𝑖𝑗
=

{

{

{

1 𝑥
𝑖
> 𝑥
𝑗

0 𝑥
𝑖
≤ 𝑥
𝑗

(1 ≤ 𝑗 ≤ 𝑖) ,

Var (𝜏) = 2 (2𝑛 + 5)

9𝑛 (𝑛 − 1)

,

𝛽 = Median(
𝑥
𝑗
− 𝑥
𝑖

𝑗 − 𝑖

) , ∀𝑖 < 𝑗,

(4)

where 𝑛 is the length of the data series (𝑛 = 600), 𝑝 is the
allelomorph of the series, 𝛽 is the magnitude of the trend,
and 𝑈 is the test statistic value of the trend 𝛽. The positive
𝑈 indicates that the series has an increasing trend; otherwise,
the series has a decreasing trend. Moreover, if |𝑈| > 𝑈𝛼 =

1.96 while the significance level is 𝛼 = 0.05, then the series
has passed the significance test with a significant trend.

4. Construction of SWBI

4.1. Calculation of Evapotranspiration. The PET is an impor-
tant variable in hydrological cycle. The most suitable calcu-
lation method for daily PET in Haihe River basin is the P-M
equation [23], which consists ofmultiple climatic factors such
as temperature and average wind speed; sunshine hours; and
relative humidity and is a comprehensive and standardized
equation for estimating reference potential evapotranspira-
tion (PET

0
) calculated as follows [24]:

PET
0

=

0.408Δ (𝑅
𝑛
− 𝐺) + 𝛾 (900/ (𝑇 + 273)) 𝑈

2
(𝑒
𝑎
− 𝑒
𝑑
)

Δ + 𝛾 (1 + 0.34𝑈
2
)

,

𝑒
𝑠

= 0.3054

× [exp( 17.27𝑇min
𝑇min + 237.3

) + exp(
17.27𝑇max
𝑇max + 237.3

)] ,

𝑒
𝑎
= 𝑒
𝑠

RH
100

,

Δ =

4098 × [0.6108 × exp (17.27𝑇/ (𝑇 + 237.3))]
(𝑇 + 237.3)

2
,

(5)

where PET
0
is the reference potential evapotranspiration,

mm/d. Assuming the vegetation height as 0.12m, the canopy
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Figure 3: Empirical and modeled 𝑓(𝑥) values using the Generalized Extreme Value (GEV), Gamma, Normal, Lognormal, Weibull, and
Pearson-III distributions of the water budget series at different time scales.

resistance as 70 s/m, the ground surface reflectivity as 0.23
when calculating PET

0
, RH is daily relative humidity, %;

𝑅
𝑛
is the net radiation at the crop surface and calculated

based on the sunshine hours and latitude of location
(http://www.fao.org/docrep/X0490E/x0490e00.htm#Contents),

MJ/m2⋅d; 𝐺 is the soil heat flux density (𝐺 ≈ 0 for day and
ten-day periods), MJ/m2⋅d; T, 𝑇min, and 𝑇max are daily mean,
minimum, and maximum air temperature at 2m height, ∘C;
𝑈
2
is wind speed at 2m height, m/s; 𝑒

𝑑
is the saturation vapor

pressure, kPa; 𝑒
𝑎
is the actual measured vapor pressure, kPa;
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Δ is the slope vapor pressure curve that represents the slope
of the saturation vapor pressure temperature relationship,
kPa/∘C; 𝛾 is the psychrometric constant (𝛾 = 0.039 in this
study), kPa/∘C. Detailed information about P-M equation
can been seen in FAO Irrigation and Drainage Paper 56.

Although the AET is a complicated processes seriously
impacted by the precipitation, PET, and underlying surface
system, the available energy andwater are the primary factors
determining the evapotranspiration [25, 26]. Hence, Budyko
(1974) developed an empirical equation to estimate annual
areal AET. It is widely used to study basin-scale water and
energy balances [27] and expressed as

AET𝑎 = [𝑃𝑎 × (1 − exp(−PET
𝑃
𝑎

𝑎

)) × PET𝑎

× tanh( 𝑃
𝑎

PET𝑎
)]

0.5

,

(6)

where AET𝑎,𝑃𝑎, and PET𝑎 are annual areal actual evapotran-
spiration, precipitation, and potential evapotranspiration of
Haihe River basin, respectively; a ranges from 1960 to 2010 in
this study.

However, monthly areal AET is more complicated
to calculate compared with annual areal AET since the
monthly water budget is more sensitive to impact factors
such as hydrometeorology, underlying surface system, and
antecedent soil moisture. Under a rough assumption that
monthly evapotranspiration coefficient (ETC𝑎

𝑖
= AET𝑎

𝑖
/𝑃
𝑎

𝑖
)

is approximately equal to annual evapotranspiration coeffi-
cient (ETC𝑎 = AET𝑎/𝑃𝑎),monthly arealAET can be obtained
as follows:

AET𝑎
𝑖
= 𝑃
𝑎

𝑖
×

AET𝑎

𝑃
𝑎

= AET𝑎 ×
𝑃
𝑎

𝑖

𝑃
𝑎
, (7)

where AET𝑎
𝑖
and 𝑃𝑎

𝑖
are the areal actual evapotranspiration

and precipitation of Haihe River basin in 𝑖th month at year 𝑎
accordingly.

4.2. Calculation of SWBI. According to the water budget,
monthly water budget can be expressed as

𝑊
𝑎

𝑖
= 𝑃
𝑎

𝑖
− AET𝑎

𝑖
= 𝑅
𝑎

𝑖
+ Δ𝑆
𝑎

𝑖
, (8)

where 𝑃𝑎
𝑖
, AET𝑎

𝑖
, 𝑅𝑎
𝑖
, and Δ𝑆

𝑎

𝑖
are the areal precipitation,

actual evapotranspiration, runoff, and variation of soil mois-
ture of the 𝑖th month in the year 𝑎, respectively. 𝑊𝑎

𝑖
is the

water budget ofHaihe River basin, which consists of variation
of soil moisture and runoff. As a result, water budget is a
comprehensive drought index, which can describe hydrolog-
ical drought but also depict the drought/wet condition of soil
moisture.

The monthly water budget [28] is a signal of drought/wet
for the month i, and the accumulated water budget (𝑊

𝑖,𝑘
) is

calculated as a multiple time scales drought/wet measure:

𝑊
𝑖,𝑘
=

𝑖=𝑖

∑

𝑖=𝑖−𝑘+1

𝑊
𝑖
, (9)
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where𝑊
𝑖,𝑘

is the accumulated water budget of 𝑖th month at
time scale k.

Subsequently, six common distributions (Generalized
Extreme Value (GEV), Gamma, Normal, Lognormal,
Weibull, and Pearson-III distribution) were applied to model
the water budget series 𝑊

𝑖,𝑘
at different time scales, and

the empirical and modeled 𝑓(𝑥) were shown in Figure 3.
Furthermore, the Kolmogorov-Smirnov test was used to
choose the most suitable probability distribution function
for water budget series. The result displays that only K-S
D value of Gamma and Lognormal distribution achieves
significance (𝑃 = 0.05) at all time scales (Figure 4).

Based on the Budyko curve, the annual AET is less than
precipitation. Therefore, 𝑊

𝑖
derived from (8) and (9) is a

positive and proportional to precipitation.Then, the Gamma
and Lognormal distribution were applied to construct SWBI,
separately. When Gamma distribution was selected to match
the distribution ofwater budget series𝑊

𝑖,𝑘
,𝐹(𝑥) values of𝑊

𝑖,𝑘

series can be obtained from same procedure in SPEI and are
formulated by (10) to (15). One has

𝑔 (𝑥) =

1

𝛽
𝛼
Γ (𝛼)

𝑥
𝛼−1
𝑒
−𝑥/𝛽

, 𝑥 > 0 (10)

Γ (𝑥) = ∫

∞

0

𝑥
𝛼−1
𝑒
−𝑥
𝑑𝑥, (11)

where 𝑥 is𝑊
𝑖,𝑘
series at different time scales (the time scale of

1, 3, 6, 9, 12, 18, and 24months was taken into consideration in
this study); Γ(𝑥) is theGamma function;𝛼 and𝛽 are the shape
and scale parameters, respectively, which can be calculated as
follows:

𝐴 = lg𝑥 − 1
𝑛

𝑛

∑

𝑖=1

lg𝑥
𝑖
,

𝛼 =

1 + √1 + 4𝐴/3

4𝐴

,

𝛽 =

𝑥

𝛼

,

(12)
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where 𝑛 is the length of the time series. Accordingly, 𝑊
𝑖,𝑘

series obeys the accumulative distribution 𝐺(𝑥):

𝐺 (𝑥) =

1

𝛽
𝛼
Γ (𝛼)

∫

𝑥

0

𝑡
𝛼−1
𝑒
−𝑡/𝛽

𝑑𝑡, for 𝑥 > 0. (13)

However, 𝐺(𝑥) does not take the extreme scenario (𝑥 = 0)
into account and then 𝐺(𝑥) is modified as 𝐹(𝑥):

𝐹 (𝑥) = 𝑞 + (1 − 𝑞)𝐺 (𝑥) . (14)

Then 𝐹(𝑥) needs to be transformed into standard Normal
distribution (see (15)), and the gam-SWBI can be calcu-
lated following the classical approximation [28]; the drought
classification of SWBI and the corresponding occurrence
probabilities of each severity level are listed in Table 1
according to the classification of SPEI [1]:

gam-SWBI =
{
{
{

{
{
{

{

𝑡 −

𝑐
0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

1 + 𝑑
1
𝑡 + 𝑑
2
𝑡
2
+ 𝑑
3
𝑡
3
, 𝑡 = √−2 ln (1 − 𝐹 (𝑥)), 0.5 < 𝐹 (𝑥) < 1.0

𝑐
0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

1 + 𝑑
1
𝑡 + 𝑑
2
𝑡
2
+ 𝑑
3
𝑡
3
− 𝑡, 𝑡 = √−2 ln (𝐹 (𝑥)), 0 < 𝐹 (𝑥) ≤ 0.5,

(15)

where 𝑞 is the probability of exceeding 𝑥 (14); the constants
𝑐
0
= 2.51557, 𝑐

1
= 0.802853, 𝑐

2
= 0.010328, 𝑑

1
= 1.432788, 𝑑

2
=

0.189269, and 𝑑
2
= 0.001308.

In contrast, 𝐹(𝑥) values of 𝑊
𝑖,𝑘

series can be calculated
through (16) to (19), while the Lognormal distribution is
selected to fit the distribution of water budget series𝑊

𝑖,𝑘
(i.e.,

logn-SWBI), and the value of logn-SWBI also agrees with the
classification of SWBI (Table 1):

𝑓 (𝑥) =

1

𝜎√2𝜋

exp[−
(ln𝑥 − 𝜇)
2𝜎
2

] , 𝑥 > 0 (16)

𝜇 =

∑
𝑛

𝑖=1
ln𝑥
𝑖

𝑛

, (17)

𝜎 =
√
∑
𝑛

𝑖=1
(ln𝑥
𝑖
− 𝜇)
2

𝑛

,
(18)

logn-SWBI = ∫
𝑥

0

𝑡𝑓 (𝑡) d𝑡, (19)

where 𝑥 is𝑊
𝑖,𝑘
series at different time scales.

Finally, the gam-SWBI and logn-SWBI were calculated
separately, and the PCCs between gam-SWBI/logn-SWBI
and sc-PDSI at different time scales are shown in Figure 5.
It indicates that the PCCs between gam-SWBI and sc-PDSI
are higher than that between logn-SWBI and sc-PDSI, which
implies that gam-SWBI is better than logn-SWBI to describe
drought condition and Gamma distribution is more suitable
distribution for the water budget at different time scales.
Consequatly, gam-SWBI is the defaulted SWBI formulated by
(10) to (15) in this paper.

5. Results and Discussion

5.1. Validation in Drought Evolution. Themultiscalar drought
indices (SPI, RDI, SPEI, and SWBI) at different time scales
were applied into comparison with the sc-PDSI in Haihe
River basin from 1961 to 2010 (Figure 6), since the sc-PDSI is a
reference index for measuring meteorological drought based
on simple water balance model [10], in which the PET was

calculated through the P-M equation instead ofThornthwaite
method. The result displays that both multiscalar drought
indices and sc-PDSI show that there are three typical inter-
annual drought episodes which occurred in 1980–1985, 1999–
2003, and 2005–2008, which is consistent with the result by
the previous research in Haihe River basin [2]. In addition,
PCCs between multiscalar drought indices and sc-PDSI are
shown in Figure 7(a). It demonstrates that the multiscalar
drought indices correlate well with the sc-PDSI on the time
scale around 12 months, which is consistent with the research
by VICENTE-SERRANO (2010). SWBI performs better than
the other multiscalar drought indices with higher PCCs at
the time scale within 12 months. Figure 7(b) illustrates the
RMSE between multiscalar drought indices and sc-PDSI at
different time scales, and the results present that the RMSE
of SWBI is the smallest among the RMSEs of multiscalar
drought indices, which implies that SWBI outperforms other
multiscalar drought indices in Haihe River basin.

5.2. Validation in Drought Trend. M-K trend test was used to
examine trends of drought indices in Haihe River basin from
1961 to 2010 at different time scales (Figure 8). It displays that
trends of all the multiscalar drought indices were decreasing
(negative). Although the increase in temperature makes an
increase of PET, the increase in vapor pressure driven by the
decrease in wind and solar radiation has offset the effect of
temperature [17]. Therefore, the possible reason is that the
decreasing precipitation contributes to the decreasing trend
of drought in Haihe River basin [29]. The trends of drought
decrease along with the increasing time scale due to the
accumulative effect of water budget series. Meanwhile, the
decreasing trend of sc-PDSI is −0.004 and obviously stronger
than the decreasing trends of multiscalar drought indices.
The reason is that the amplitude of sc-PDSI is nearly twice
as much as multiscalar drought indices. Furthermore, the
decreasing trends of SPI, RDI, and SPEI are insignificant at
time scale of 1 and 3 months and inconsistent with significant
decreasing trends of SPI, RDI, and SPEI at time scales more
than 3 months. Thus, it implies that there is an uncertain
timescale effect on the multiscalar drought assessment for
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Table 1: SWBI classification.

SWBI value SWBI category
SWBI > 2.0 Extreme wet conditions
1.5 < SWBI ⩽ 2.0 Severe wet conditions
1.0 < SWBI ⩽ 1.5 Moderate wet conditions
0.5 < SWBI ⩽ 1.0 Mild wet conditions
−0.49 < SWBI ⩽ 0.5 Near normal
−1.0 < SWBI ⩽ −0.5 Mild drought
−1.5 < SWBI ⩽ −1.0 Moderate drought
−2.0 ⩽ SWBI ⩽ −1.5 Severe drought
SWBI < −2.0 Extreme drought
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Figure 5: Pearson correlation coefficients between logn-SWBI/
gam-SWBI and sc-PDSI.

SPI, RDI, and SPEI. In contrast, the trends of SWBI are
consistent and more stable at different time scales. Therefore,
it reveals that SWBI is more suitable to describe the drought
trend in Haihe River basin, especially at time scales less than
3 months.

Figure 9 shows the drought episodes of different drought
classifications in Haihe River basin during 1961–2010 at time
scale of 12 months, which is the most consistent time scale
for the relation between sc-PDSI and multiscalar drought
indices. The result demonstrates that the number of drought
months identified by sc-PDSI is much larger than that
of multiscalar drought indices in the mild and moderate
drought and smaller than that of multiscalar drought indices
in severe and extreme drought.The possible reason is that sc-
PDSI was derived from water balance model, during which
the soil moisture regulating function plays an important role
in controlling extreme climate events. Moreover, the number
of drought months identified by SWBI is more close to that
of sc-PDSI in different drought classification.

5.3. Discussions on Rationality of Actual Evapotranspiration.
The relation between annual areal AET/precipitation and
annual PET/precipitation is shown in Figure 10. It indicates
that the areal AET obtained from the empirical equation
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Figure 6: Comparisons of the drought indices at multiple time
scales in Haihe River basin (the drought indices were smoothed by
moving average filter with the span of 12 months, and three serious
drought periods are marked by yellow shadows.).

(see (6)) follows the Budyko curve in Haihe River basin.
Annual evapotranspiration coefficient (ETC𝑎 = annual actual
evapotranspiration/precipitation) is stable and has a slightly
decreasing trend along with the increasing annual precip-
itation (Figure 11). However, monthly evapotranspiration
coefficient (ETC𝑎

𝑖
) is more variable since the seasonal climate

variation. Thus, monthly AET is complicated and sensi-
tive to the influence of hydrometeorology and underlying
surface system and cannot be accurately estimated without
the hydrological process simulation/observation. Although
monthly AET obtained from the assumption that monthly
ETC𝑎
𝑖
is equal to annual ETC𝑎 is rough approximations,

the interannual difference of annual ETC𝑎 and innerannual
distribution ofmonthly precipitation will result in an approx-
imate estimation of monthly AET via (7). Then, the relations
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between AET and precipitation at monthly and annual scales
are illustrated in Figure 12. The result points out that there
is an obvious linear relation between AET and precipitation,
and the integrated monthly ETC𝑎

𝑖
(0.8550) obtained from

different annual ETC𝑎 and monthly precipitation is approxi-
mately equal to integrated annual ETC𝑎 (0.8558) from 1961 to
2010 in Haihe River basin, which implies that the calculation
of annual and monthly AET is feasible in the paper.

6. Summary and Conclusions

In this study, SWBIwas constructed based on the actual water
budget, which was derived from the difference between areal
precipitation andAET and followed the Gamma distribution.

0

20

40

60

80

100

120

140

Mild
drought

Moderate
drought

Severe
drought

Extreme
drought

N
um

be
rs

 o
f d

ro
ug

ht
 m

on
th

s

sc-PDSI SWBI12
SPI12 RDI12
SPEI12

Figure 9: Drought episodes of different drought classifications
identified by drought indices at time scale of 12 months.

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

A
ET

/p
re

ci
pi

ta
tio

n

PET/precipitation

Budyko 
curve

Figure 10: Relation between annual AET/precipitation and annual
PET/precipitation.



Advances in Meteorology 9

0.0

0.2

0.4

0.6

0.8

1.0

300 400 500 600 700 800 900
Precipitation (mm)

y = −0.0005x + 1.144 (dashed-line)
R2 = 0.9514

EC
a

Figure 11: Relation between annual evapotranspiration coefficient and precipitation.

0

200

400

600

800

0 300 600 900

A
ET

 (m
m

)

Precipitation (mm)

y = 0.8558x (dashed-line)
R2 = 0.7146

Pearson correlation coefficient r = 0.9778

(a)

Precipitation (mm)

0

100

200

300

0 100 200 300

A
ET

 (m
m

)

y = 0.8550x (dashed-line)
R2 = 0.9935

Pearson correlation coefficient r = 0.9968

(b)

Figure 12: Annual and monthly relations between actual evapotranspiration and precipitation: (a) annual relation; (b) monthly relation.

Then sc-PDSI was taken as the reference drought index to
compare with multiscalar drought indices (SPI, RDI, SPEI,
and SWBI) in Haihe River basin from 1961 to 2010; the result
displays the following:

(1) Multiscalar drought indices correlate highly with sc-
PDSI at the time scale around 12 months, and SWBI
correlates better with sc-PDSI than other multiscalar
drought indices with higher PCCs at the time scale
less than 12 months. Moreover, the RMSE of SWBI
was less than that of other multiscalar drought
indices.

(2) Three typical interannual drought episodes occurred
in 1980–1985, 1999–2003, and 2005–2008 were iden-
tified by all of the drought indices, and there is an
obviously decreasing trend of drought indices, pos-
sibly due to the decreasing precipitation. Moreover,
the decreasing trend of SWBI is significant at all
the time scales; meanwhile decreasing trend of other
multiscalar drought indices is insignificant at time
scales less than 3 months. Additionally, the numbers
of drought months derived from SWBI in different
drought classification were more close to the sc-PDSI

than othermultiscalar drought indices at time scale of
12 months.

According to the aforementioned results, it can be concluded
that SWBI is more suitable for drought estimation in Haihe
River basin. On the one hand, SWBI derived from water
budget is more flexible than sc-PDSI due to the multiscalar
characters and convenient calculation. On the other hand,
SWBI takes more meteorological factors into consideration
than SPI, and the actual water budget in SWBI calculated by
the difference between AET and precipitation agrees better
with natural water budget than that in SPEI. Nevertheless,
the calculation methods of monthly and annual AET are
empirical and generalized in SWBI. Therefore, it will be
meaningful to improve the accuracy of AET, particularly the
monthly AET, for SWBI in the future researches.
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