43,608 research outputs found

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure

    Simple scheme for two-qubit Grover search in cavity QED

    Full text link
    Following the proposal by F. Yamaguchi et al.[Phys. Rev. A 66, 010302 (R) (2002)], we present an alternative way to implement the two-qubit Grover search algorithm in cavity QED. Compared with F. Yamaguchi et al.'s proposal, with a strong resonant classical field added, our method is insensitive to both the cavity decay and thermal field, and doesn't require that the cavity remain in the vacuum state throughout the procedure. Moreover, the qubit definitions are the same for both atoms, which makes the experiment easier. The strictly numerical simulation shows that our proposal is good enough to demonstrate a two-qubit Grover's search with high fidelity.Comment: manuscript 10 pages, 2 figures, to appear in Phys. Rev.

    Entanglement Rate for Gaussian Continuous Variable Beams

    Get PDF
    We derive a general expression that quantifies the total entanglement production rate in continuous variable systems, where a source emits two entangled Gaussian beams with arbitrary correlators.This expression is especially useful for situations where the source emits an arbitrary frequency spectrum,e.g. when cavities are involved. To exemplify its meaning and potential, we apply it to a four-mode optomechanical setup that enables the simultaneous up- and down-conversion of photons from a drive laser into entangled photon pairs. This setup is efficient in that both the drive and the optomechanical up- and down-conversion can be fully resonant.Comment: 18 pages, 6 figure

    Effective g-factor in Majorana Wires

    Full text link
    We use the effective g-factor of subgap states, g*, in hybrid InAs nanowires with an epitaxial Al shell to investigate how the superconducting density of states is distributed between the semiconductor core and the metallic shell. We find a step-like reduction of g* and improved hard gap with reduced carrier density in the nanowire, controlled by gate voltage. These observations are relevant for Majorana devices, which require tunable carrier density and g* exceeding the g-factor of the proximitizing superconductor. Additionally, we observe the closing and reopening of a gap in the subgap spectrum coincident with the appearance of a zero-bias conductance peak

    Superluminal propagation of an optical pulse in a Doppler broadened three-state, single channel active Raman gain medium

    Get PDF
    Using a single channel active Raman gain medium we show a (220±20)(220\pm 20)ns advance time for an optical pulse of τFWHM=15.4μ\tau_{FWHM}=15.4 \mus propagating through a 10 cm medium, a lead time that is comparable to what was reported previously. In addition, we have verified experimentally all the features associated with this single channel Raman gain system. Our results show that the reported gain-assisted superluminal propagation should not be attributed to the interference between the two frequencies of the pump field.Comment: 4 pages, 3 figure

    Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage

    Get PDF
    A simple scheme is presented to generate n-qubit W state with rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED through adiabatic passage. Because of the achievable strong coupling for rf-SQUID qubits embedded in cavity QED, we can get the desired state with high success probability. Furthermore, the scheme is insensitive to position inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using present experimental techniques, we can achieve our scheme with very high success probability, and the fidelity could be eventually unity with the help of dissipation.Comment: to appear in Phys. Rev.
    corecore