5,007 research outputs found
Comparison of four commercial immunomagnetic separation kits for the detection of Cryptosporidium
Cryptosporidium spp. are protozoan parasites of significant health importance found in environmental waters globally. Four commercially available Cryptosporidium-specific immunomagnetic separation (IMS) kits used in various water sample matrices were analysed and compared. Beads were characterised by flow cytometry and tested for the recovery efficiencies for oocysts spiked into different matrices: river water sediment, clay sample, and filter backwash sample. Results showed that DynabeadsTM Cryptosporidium and Waterborne Crypto-GrabTM kits contained immunoglobulin IgM antibody-coated beads. In contrast, the BioPoint CryptoBead and the TCS Isolate kits contained immunoglobulin IgG antibody-coated beads. BioPoint CryptoBead was significantly coated with more antibodies and were able to capture oocysts more rapidly compared to the other beads. Recovery efficiencies of DynabeadsTM, TCS Isolate® beads, and BioPoint Crypto- Bead ranged from 55 to 93% when tested against different sample matrices, with BioPoint CryptoBead resulting in the highest at 93% in reagent-grade water and DynabeadsTM at 55%, the lowest against clay samples. The Waterborne beads did not perform well on any samples, with recovery efficiencies ranging from 0 to 8%. Fluorescence microscopy analyses showed that both the IMS method and the sample matrix processed affect the quality of the membranes, with the cleanest samples for microscopy examination observed from BioPoint CryptoBead
Boundaries of Disk-like Self-affine Tiles
Let be a disk-like self-affine tile generated by an
integral expanding matrix and a consecutive collinear digit set , and let be the characteristic polynomial of . In the
paper, we identify the boundary with a sofic system by
constructing a neighbor graph and derive equivalent conditions for the pair
to be a number system. Moreover, by using the graph-directed
construction and a device of pseudo-norm , we find the generalized
Hausdorff dimension where
is the spectral radius of certain contact matrix . Especially,
when is a similarity, we obtain the standard Hausdorff dimension where is the largest positive zero of
the cubic polynomial , which is simpler than
the known result.Comment: 26 pages, 11 figure
Effects of ferroelectric-poling-induced strain on the quantum correction to low-temperature resistivity of manganite thin films
Author name used in this publication: H. L. W. ChanAuthor name used in this publication: H. S. Luo2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Combination of angiotensin converting enzyme inhibitor and irbesartan for the treatment of heart failure
published_or_final_versio
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Methylation of hMLH1 promoter correlates with the gene silencing with a region-specific manner in colorectal cancer
Microsatellite instability is present in over 80% of the hereditary non-polyposis colorectal carcinoma and about 15–20% of the sporadic cancer. Microsatellite instability is caused by the inactivation of the mismatch repair genes, such as primarily hMLH1, hMSH2. To study the mechanisms of the inactivation of mismatch repair genes in colorectal cancers, especially the region-specific methylation of hMLH1 promoter and its correlation with gene expression, we analysed microsatellite instability, expression and methylation of hMLH1 and loss of heterozygosity at hMLH1 locus in these samples. Microsatellite instability was present in 17 of 71 primary tumours of colorectal cancer, including 14 of 39 (36%) mucinous cancer and three of 32 (9%) non-mucinous cancer. Loss of hMLH1 and hMSH2 expression was detected in nine and three of 16 microsatellite instability tumours respectively. Methylation at CpG sites in a proximal region of hMLH1 promoter was detected in seven of nine tumours that showed no hMLH1 expression, while no methylation was present in normal mucosa and tumours which express hMLH1. However, methylation in the distal region was observed in all tissues including normal mucosa and hMLH1 expressing tumours. This observation indicates that methylation of hMLH1 promoter plays an important role in microsatellite instability with a region-specific manner in colorectal cancer. Loss of heterozygosity at hMLH1 locus was present in four of 17 cell lines and 16 of 54 tumours with normal hMLH1 status, while loss of heterozygosity was absent in all nine cell lines and nine tumours with abnormal hMLH1 status (mutation or loss of expression), showing loss of heterozygosity is not frequently involved in the inactivation of hMLH1 gene in sporadic colorectal cancer
Grassmannian flows and applications to nonlinear partial differential equations
We show how solutions to a large class of partial differential equations with
nonlocal Riccati-type nonlinearities can be generated from the corresponding
linearized equations, from arbitrary initial data. It is well known that
evolutionary matrix Riccati equations can be generated by projecting linear
evolutionary flows on a Stiefel manifold onto a coordinate chart of the
underlying Grassmann manifold. Our method relies on extending this idea to the
infinite dimensional case. The key is an integral equation analogous to the
Marchenko equation in integrable systems, that represents the coodinate chart
map. We show explicitly how to generate such solutions to scalar partial
differential equations of arbitrary order with nonlocal quadratic
nonlinearities using our approach. We provide numerical simulations that
demonstrate the generation of solutions to
Fisher--Kolmogorov--Petrovskii--Piskunov equations with nonlocal
nonlinearities. We also indicate how the method might extend to more general
classes of nonlinear partial differential systems.Comment: 26 pages, 2 figure
Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies.
Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.We would like to acknowledge H. Ghiradella (University at Albany), M. Blohm and S. Duclos (GE) and V. Greanya, J. Abo-Shaeer, C. Nehl and M. Sandrock (DARPA) for fruitful discussions. This work has been supported in part from DARPA contract W911NF-10-C-0069 ‘Bio Inspired Photonics’ and from General Electric’s Advanced Technology research funds. The content of the information does not necessarily reflect the position or the policy of the US Government
Fracturing ranked surfaces
Discretized landscapes can be mapped onto ranked surfaces, where every
element (site or bond) has a unique rank associated with its corresponding
relative height. By sequentially allocating these elements according to their
ranks and systematically preventing the occupation of bridges, namely elements
that, if occupied, would provide global connectivity, we disclose that bridges
hide a new tricritical point at an occupation fraction , where
is the percolation threshold of random percolation. For any value of in the
interval , our results show that the set of bridges has a
fractal dimension in two dimensions. In the limit , a self-similar fracture is revealed as a singly connected line
that divides the system in two domains. We then unveil how several seemingly
unrelated physical models tumble into the same universality class and also
present results for higher dimensions
- …