26,542 research outputs found
Signal processing in high speed OTDM networks
This paper presents the design and experimental results of an optical packet-switching testbed capable of performing message routing with single wavelength TDM packet bit rates as high as 100 Gb/s
The Inconceivable Popularity of Conceivability Arguments
Famous examples of conceivability arguments include (i) Descartes’ argument for mind-body dualism, (ii) Kripke's ‘modal argument’ against psychophysical identity theory, (iii) Chalmers’ ‘zombie argument’ against materialism, and (iv) modal versions of the ontological argument for theism. In this paper, we show that for any such conceivability argument, C, there is a corresponding ‘mirror argument’, M. M is deductively valid and has a conclusion that contradicts C's conclusion. Hence, a proponent of C—henceforth, a ‘conceivabilist’—can be warranted in holding that C's premises are conjointly true only if she can find fault with one of M's premises. But M's premises are modelled on a pair of C's premises. The same reasoning that supports the latter supports the former. For this reason, a conceivabilist can repudiate M's premises only on pain of severely undermining C's premises. We conclude on this basis that all conceivability arguments, including each of (i)–(iv), are fallacious
Quantum phases of interacting phonons in ion traps
The vibrations of a chain of trapped ions can be considered, under suitable
experimental conditions, as an ensemble of interacting phonons, whose quantum
dynamics is governed by a Bose--Hubbard Hamiltonian. In this work we study the
quantum phases which appear in this system, and show that thermodynamical
properties, such as critical parameters and critical exponents, can be measured
in experiments with a limited number of ions. Besides that, interacting phonons
in trapped ions offer us the possibility to access regimes which are difficult
to study with ultracold bosons in optical lattices, like models with attractive
or site--dependent phonon-phonon interactions.Comment: 10 page
Interaction-induced Interlayer Charge Transfer in the Extreme Quantum Limit
An interacting bilayer electron system provides an extended platform to study
electron-electron interaction beyond single layers. We report here experiments
demonstrating that the layer densities of an asymmetric bilayer electron system
oscillate as a function of perpendicular magnetic field that quantizes the
energy levels. At intermediate fields, this interlayer charge transfer can be
well explained by the alignment of the Landau levels in the two layers. At the
highest fields where both layers reach the extreme quantum limit, however,
there is an anomalous, enhanced charge transfer to the majority layer.
Surprisingly, when the minority layer becomes extremely dilute, this charge
transfer slows down as the electrons in the minority layer condense into a
Wigner crystal. Furthermore, by examining the quantum capacitance of the dilute
layer at high fields, the screening induced by the composite fermions in an
adjacent layer is unveiled. The results highlight the influence of strong
interaction in interlayer charge transfer in the regime of very high fields and
low Landau level filling factors.Comment: Please see the formal version on PR
Families of strictly pseudoconvex domains and peak functions
We prove that given a family of strictly pseudoconvex domains varying
in topology on domains, there exists a continuously varying
family of peak functions for all at every $\zeta\in\partial
G_t.
High-contrast dark resonance on the D2 - line of 87Rb in a vapor cell with different directions of the pump - probe waves
We propose a novel method enabling to create a high-contrast dark resonance
in the 87Rb vapor D2-line. The method is based on an optical pumping of atoms
into the working states by a two-frequency, linearly-polarized laser radiation
propagating perpendicularly to the probe field. This new scheme is compared to
the traditional scheme involving the circularly-polarized probe beam only, and
significant improvement of the dark resonance parameters is found. Qualitative
considerations are confirmed by numerical calculations.Comment: 7 pages, 4 figure
Neutron scattering study of commensurate magnetic ordering in single crystal CeSb
Temperature and field-dependent magnetization measurements and
neutron scattering study of a single crystal CeSb are presented. Several
anomalies in the magnetization curves have been confirmed at low magnetic
field, i.e., 15.6 K, 12 K, and 9.8 K. These three transitions are all
metamagnetic transitions (MMT), which shift to lower temperatures as the
magnetic field increases. The anomaly at 15.6 K has been suggested as
paramagnetic (PM) to ferromagnetic (FM) phase transition. The anomaly located
at around 12 K is antiferromagnetic-like transition, and this turning point
will clearly split into two when the magnetic field T. Neutron
scattering study reveals that the low temperature ground state of CeSb
orders antiferromagnetically with commensurate propagation wave vectors
and , with N\'eel
temperature K. This transition is of first-order, as shown in the
hysteresis loop observed by the field cooled cooling (FCC) and field cooled
warming (FCW) processes.Comment: 7 pages,9 figure
Centrifuge modeling of rocking-isolated inelastic RC bridge piers
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd
Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state
We present a scheme for symmetric multiparty quantum state sharing of an
arbitrary -qubit state with Greenberger-Horne-Zeilinger states following
some ideas from the controlled teleportation [Phys. Rev. A \textbf{72}, 02338
(2005)]. The sender Alice performs Bell-state measurements on her
particles and the controllers need only to take some single-photon product
measurements on their photons independently, not Bell-state measurements, which
makes this scheme more convenient than the latter. Also it does not require the
parties to perform a controlled-NOT gate on the photons for reconstructing the
unknown -qubit state and it is an optimal one as its efficiency for qubits
approaches the maximal value.Comment: 6 pages, no figures; It simplifies the process for sharing an
arbitrary m-qubit state in Phys. Rev. A 72, 022338 (2005) (quant-ph/0501129
- …
