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Abstract Weprove that given a family (Gt ) of strictly pseudoconvex domains varying
inC2 topologyondomains, there exists a continuously varying family of peak functions
ht,ζ for all Gt at every ζ ∈ ∂Gt .
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1 Introduction

Let D ⊂ C
n be a bounded domain and let ζ be a boundary point of D. It is called a

peak point with respect to O(D), the family of functions which are holomorphic in
a neighborhood of D, if there exists a function f ∈ O(D) such that f (ζ ) = 1 and
f (D\{ζ }) ⊂ D := {z ∈ C : |z| < 1}. Such a function is a peak function for D at
ζ . The concept of peak functions appears to be a powerful tool in complex analysis
with many applications. It has been used to show the existence of (complete) proper
holomorphic embeddings of strictly pseudoconvex domains into the unit ball BN with
large N [3,5], to estimate the boundary behavior of Carathéodory and Kobayashi
metrics [1,7], or to construct the solution operators for ∂ problem with L∞ or Hölder
estimates [4,10], just to name a few of those applications.

It is well known that every boundary point of strictly pseudoconvex domain is a
peak point. Even more is true, in [7] it is showed that, given a strictly pseudoconvex
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Families of Strictly Pseudoconvex Domains and Peak Functions 2467

domain G, there exists an open neighborhood ̂G of G, and a continuous function
h : ̂G × ∂G → C such that for ζ ∈ ∂G, the function h(·; ζ ) is a peak function for G
at ζ .

In a recent paper [2], the following question has been posed:

Problem 1.1 Let ρ : D × C
n → R be a plurisubharmonic function of class

C2+k, k ∈ N ∪ {0}, such that for any z ∈ D the truncated function ρ|{z}×Cn is strictly
plurisubharmonic. Define Gz := {w ∈ C

n : ρ(z, w) < 0}, z ∈ D. This can be
understood as a family of strictly pseudoconvex domains over D. Does there exist a
Ck-continuously varying family (hz,ζ )z∈D,ζ∈∂Gz of peak functions for Gz at ζ?

We answer this question affirmatively in the case k = 0 and under additional assump-
tion that, roughly speaking, the function ρ keeps its regularity up to the set � × C

n ,
where � is some open neighborhood of D (however, see Remark 1.5 below). Namely,
let us consider the following:

Situation 1.2 Let (Gt )t∈T be a family of bounded strictly pseudoconvex domains,
where T is a compact metric space with associated metric d. Suppose we have a
domain U ⊂⊂ C

n such that

(1)
⋃

t∈T
∂Gt ⊂⊂ U ,

(2) for each t ∈ T there exists a defining function rt for Gt satisfying with neighbor-
hood ∂Gt ⊂ U all the conditions (A)–(D) below (see Sect. 2),

(3) for any ε > 0 there exists a δ > 0 such that for any s, t ∈ T with d(s, t) ≤ δ

there is ‖rt − rs‖C2(U ) < ε.

Observe that the above setting is completely in the spirit of the formulation of Problem
1.1:

(i) The assumption that all the functions rt satisfy (A)–(D) with common neighbor-
hood ∂Gt ⊂ U stays in relation with the fact that in Problem 1.1 all the defining
functions for domains Dz have the same domain of definition (Cn).

(ii) The assumption (3) comes from the fact that the function ρ in Problem 1.1 is of
class at least C2.

(iii) The compactness of the set of parameters (T ) reflects the above-mentioned
assumption that ρ continues to be of class C2 up to � × C

n , with � being
some neighborhood of D.

We shall prove the following:

Theorem 1.3 Let (Gt )t∈T be a family of strictly pseudoconvex domains as in Situation
1.2. Then there exists an ε > 0 such that for any η1 < ε there exist an η2 > 0 and
positive constants d1, d2 such that for any t ∈ T there exist a domain ̂Gt containing
Gt , and functions ht (·; ζ ) ∈ O(̂Gt ), ζ ∈ ∂Gt fulfilling the following conditions:

(a) ht (ζ ; ζ ) = 1, |ht (·; ζ )| < 1 on Gt\{ζ } (in particular, ht (·; ζ ) is a peak function
for Gt at ζ ),

(b) |1 − ht (z; ζ )| ≤ d1‖z − ζ‖, z ∈ ̂Gt ∩ B(ζ, η2),

(c) |ht (z; ζ )| ≤ d2 < 1, z ∈ Gt , ‖z − ζ‖ ≥ η1.
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2468 A. Lewandowski

Moreover, the constants ε, η2, d1, d2, domains ̂Gt , and functions ht (·; ζ ) may be cho-
sen in such away that for anyα > 0 and any fixed triple (t0, ζ0, z0), where t0 ∈ T, ζ0 ∈
∂Gt0 , and z0 ∈ ̂Gt0 , there exists a δ > 0 such that whenever the triple (s, ξ, w) sat-
isfies s ∈ T, ξ ∈ ∂Gs, w ∈ ̂Gs, and max{d(s, t0), ‖ξ − ζ0‖, ‖w − z0‖} < δ, then
|ht0(z0; ζ0) − hs(w; ξ)| < α.

The latter property will be referred to as continuity.

Remark 1.4 It is known that for each t ∈ T there exists an ε = ε(t) > 0 such that for
any η1 < ε there exist a positive η2 = η2(t) < η1, constants d1 = d1(t), d2 = d2(t) ∈
R, domain ˜Gt containing Gt , and functions ht (·; ζ ) ∈ O(̂Gt ), ζ ∈ ∂Gt satisfying
(a)–(c). This is a subject of Theorem 19.1.2 from [8]. The strength of our result dwells
in the fact that all the constants ε, η2, d1, d2 are chosen independently of t and in the
continuity property.

Remark 1.5 As noticed by the referee, our result can be strengthened in the spirit of
Theorem 5.1 from [6]. It gives the construction of Henkin–Ramírez functions for vari-
able strictly pseudoconvex open sets (with boundaries of class C2+a, j ; see Definition
2.5 therein) depending C1+a, j -smoothly on a parameter. Under similar assumptions
as in [6], and by merging the method of proof of our Theorem 1.3 with the method
of proof of Theorem 5.1 from [6], we can get similar regularity for the dependence of
our peak functions on the parameter.

In Sect. 2, we recall some preliminaries concerning the strictly pseudoconvex
domains. The proof of Theorem 1.3 is presented in Sect. 3.

2 Strictly Pseudoconvex Domains

Let D ⊂⊂ C
n be a domain. It is called a strictly pseudoconvex if there exist a neigh-

borhood U of ∂D and a defining function r : U → R of class C2 and such that

(A) D ∩U = {z ∈ U : r(z) < 0},
(B) (Cn\D) ∩U = {z ∈ U : r(z) > 0},
(C) ∇r(z) �= 0 for z ∈ ∂D, where ∇r(z) :=

(

∂r
∂z1

(z), . . . , ∂r
∂zn

(z)
)

,

together with

Lr (z; X) > 0 for z ∈ ∂D and nonzero X ∈ TC
z (∂D),

where Lr denotes the Levi form of r and TC
z (∂D) is the complex tangent space to ∂D

at z.
It is known that U and r can be chosen to satisfy (A)-(C) and, additionally,

(D) Lr (z; X) > 0 for z ∈ U and all nonzero X ∈ C
n,

cf. [9].
Note that for a function r as above and a point ζ ∈ ∂G, Taylor expansion of r at ζ

has the following form:

r(z) = r(ζ ) − 2ReP(z; ζ ) + Lr (ζ ; z − ζ ) + o(‖z − ζ‖2), (2.1)
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Families of Strictly Pseudoconvex Domains and Peak Functions 2469

where

P(z; ζ ) := −
n

∑

j=1

∂r

∂z j
(ζ )(z j − ζ j ) − 1

2

n
∑

i, j=1

∂2r

∂zi∂z j
(ζ )(zi − ζi )(z j − ζ j )

is the Levi polynomial of r at ζ .

3 Proof of Theorem 1.3

Wedivide the proof into two parts. First we give the construction of̂Gt and ht (·; ζ ), t ∈
T , and define the constants ε, η2, d1, and d2, all independent of t . This is refinement
of the construction from the proof of Theorem 19.1.2 from [8]. Note that in order to
get the independence of all the constants from t , we must be more careful here. In the
second part, we prove the continuity property.

Construction of ̂Gt and ht (·; ζ ) and the choice of ε, η2, d1, and d2. For t ∈ T and
ζ ∈ ∂Gt let Pt (z; ζ ) be the Levi polynomial of rt at ζ . �

Fix an ε1 > 0 such that U ′ :=
⋃

t∈T,ζ∈∂Gt
B(ζ, ε1) ⊂⊂ U.

There exists a constant C1 = C1(t) < 1 such that

Lrt (z; X) ≥ C1‖X‖2, z ∈ U ′, X ∈ C
n .

Indeed, Lrt is continuous and positive on U × (Cn\{0}), so it attains its minimum
C1(t) > 0 onU ′ × S

n−1. Since for any nonzero X ∈ C
n we have X

‖X‖ ∈ S
n−1, we get

the required inequality. Moreover, from the assumption (3) it follows that for s from
some neighborhood of t , we have

Lrs (z; X) ≥ C1(t)

2
‖X‖2, z ∈ U ′, X ∈ C

n .

The compactness argument then gives that C1 may be chosen independently of t .
Taylor formula (2.1) yields that with some 0 < C2 < C1 there is

rt (z) ≥ −2RePt (z; ζ ) + C2‖z − ζ‖2 (3.1)

for ‖z − ζ‖ < ε2(t) < ε1, ζ ∈ ∂Gt , where ε2(t) is independent of ζ ∈ ∂Gt (and
even of ζ ∈ W ⊂⊂ U, some neighborhood of ∂Gt—see [11], Proposition II.2.16).
Moreover, from the proof of Theorem V.3.6 from [11], it follows that for s close
enough to t we have

rs(z) ≥ rs(ζ ) − 2RePs(z; ζ ) + C2

2
‖z − ζ‖2, ζ ∈ W, ‖z − ζ‖ < ε2(t).

Therefore, for s near to t , and for ξ ∈ ∂Gs , the following estimate holds true:

rs(z) ≥ −2RePs(z; ξ) + C2

2
‖z − ξ‖2, ‖z − ξ‖ < ε2(t).

123



2470 A. Lewandowski

The compactness argument then implies that C2 and ε2 in (3.1) may be chosen inde-
pendently of t .

Let 0 < η1 < ε2 and χ̂ ∈ C∞(R, [0, 1]) be such that χ̂ (t) = 1 for t ≤ η1
2 and

χ̂(t) = 0 for t ≥ η1. Putχ(z; ζ ) := χ̂(‖z−ζ‖).This is a smooth function onC
n×C

n ,
taking its values in [0, 1].

Define

ϕt (z; ζ ) := χ(z; ζ )Pt (z; ζ ) + (1 − χ(z; ζ ))‖z − ζ‖2, z ∈ C
n .

Observe that if ‖z − ζ‖ ≤ η1
2 , then ϕt (z; ζ ) = Pt (z; ζ ). In particular ϕt (·; ζ ) ∈

O(B(ζ,
η1
2 )). Furthermore, for z satisfying ‖z − ζ‖ ≥ η1

2 and rt (z) < C2
η21
8 the

following estimate holds true:

2Reϕt (z; ζ ) ≥ C2
η21

8
> 0. (3.2)

Take 0 < ηt < C2
η21
8 such that the connected component ˜Gt containing Gt of the

open set

Gt ∪ {z ∈ U ′ : rt (z) < ηt }

is a strictly pseudoconvex domain, relatively compact in Gt ∪ U ′. Because of the
assumption (3), there exists a positive number β such that for s close to t the connected
component ˜Gs containing Gs of the set

Gs ∪ {z ∈ U ′ : rs(z) < ηt − β}

is a strictly pseudoconvex domain, relatively compact in Gs ∪ U ′. Making again use
of the compactness of T , we conclude that in fact η = ηt may be taken independently
of t. Note that, for the family (˜Gt )t∈T , the assumption (3) remains true.

The function ϕt (·; ζ ) ∈ C∞(Cn) does not vanish on ˜Gt\B(ζ,
η1
2 ) and is in

O(B(ζ,
η1
2 )). Therefore ∂̄ 1

ϕt (·;ζ )
defines a ∂̄-closed C∞ form

αt (·; ζ ) =
n

∑

j=1

αt, j (·; ζ )dz̄ j

on ˜Gt , where

αt, j =
⎧

⎨

⎩

0, z ∈ ˜Gt ∩ B(ζ ; η1
2 ),

− ∂ϕt
∂ z̄ j

(z; ζ ) · 1
ϕ2
t (z;ζ )

, z ∈ ˜Gt\B(ζ ; η1
2 ).

Thanks to (3.2) we have ‖αt, j (·; ζ )‖
˜Gt

≤ C3, where, utilizing the compactness of T
together with the assumption (3), we deliver that C3 is independent of t and ζ ∈ ∂Gt .
[11, Theorem V.2.7] gives then the functions vt (·; ζ ) ∈ C∞(˜Gt ) with ∂̄vt (·; ζ ) =
αt (·; ζ ) and
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‖vt (·; ζ )‖
˜Gt

≤ C4,

where C4 does not depend on ζ ∈ ∂Gt . Moreover, by [11, Theorem V.3.6] and the
compactness of T , C4 may be chosen to be independent of t .

Define

ft (·; ζ ) := 1

ϕt (·; ζ )
+ C4 − vt (·; ζ ), z ∈ ˜Gt\Zt (ζ ),

where

Zt (ζ ) := {z ∈ ˜Gt : ϕt (z; ζ ) = 0}.

Then ft (·; ζ ) ∈ O(˜Gt\Zt (ζ )) as well as

Re ft (·; ζ ) > 0

on the set (˜Gt\B(ζ,
η1
2 )) ∪ (Gt\{ζ }), in virtue of (3.1) and (3.2). Since for any ζ �=

z0 ∈ ∂Gt ∩ B(ζ,
η1
2 ) there exists a neighborhood Uz0 of z0 such that Re ft (·; ζ ) > 0

on Uz0 , we conclude that there exists a neighborhood Ut,ζ of Gt\{ζ } such that the
function

ht (·; ζ ) := exp(−gt (·; ζ )),

where gt (·; ζ ) := 1
ft (·;ζ )

, is holomorphic on Ht,ζ := (˜Gt\B(ζ,
η1
2 )) ∪Ut,ζ . Note that

ht takes its values in D.

There exists a C5 > 0, independent of t , such that

|Pt (z; ζ )| ≤ C5‖z − ζ‖, ζ, z ∈ U ′.

Therefore, since for 0 < η2 < min
{ η1

2 , 1
4C4C5

}

, which now is independent of t , and

for z ∈ (˜Gt ∩ B(ζ, η2))\Zt (ζ ) the following equality holds true:

gt (z; ζ ) = Pt (z; ζ )

1 − Pt (z; ζ )(vt (z; ζ ) − C4)
,

we conclude that gt (·; ζ ) is bounded near Zt (ζ ), which yields it extends to be holo-
morphic on H̃t,ζ := Ht,ζ ∪ (B(ζ, η2) ∩ ˜Gt ).

Now H̃t,ζ depends on ζ , but using the inclusion Gt ⊂ H̃t,ζ , we may find some
̂Gt , strictly pseudoconvex domain which is independent on ζ ∈ ∂Gt , such that Gt ⊂
̂Gt ⊂ H̃t,ζ for each ζ ∈ ∂Gt , and with the property that ht (·; ζ ) ∈ O(̂Gt ), ζ ∈ ∂Gt

(use the joint continuity of ϕt with respect to z and ζ to shrink H̃t,ζ little bit to get
some domain with desired properties, independent on ξ close to ζ , and finally apply
the compactness of ∂Gt ).

Let C6, independent on t and ζ ∈ ∂Gt , such that for z ∈ ̂Gt with ‖z − ζ‖ < η2 we
have
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2472 A. Lewandowski

|gt (z; ζ )| ≤ C5‖z − ζ‖
1 − 2C4C5‖z − ζ‖ ≤ C6‖z − ζ‖.

This implies

|1 − ht (z; ζ )| ≤ C7|gt (z; ζ )| ≤ C6C7‖z − ζ‖ =: d1‖z − ζ‖ (3.3)

for z ∈ ̂Gt , ‖z − ζ‖ < η2, ζ ∈ ∂Gt , if only C7 is chosen so that

|eλ − 1| ≤ C7|λ|, |λ| ≤ C6η2.

In particular, d1 does not depend on t and we have ht (ζ ; ζ ) = 1.
Furthermore, for z ∈ Gt , ‖z − ζ‖ ≥ η1 there is

Regt (z; ζ ) = ‖z − ζ‖2 1 + ‖z − ζ‖2(C4 − Revt (z; ζ ))

|1 − ‖z − ζ‖2(vt (z; ζ ) − C4)|2

≥ η21

(1 + 2(diamU )2C4)2
=: C8,

which gives
|ht (z; ζ )| ≤ e−C8 =: d2 < 1.

Observe that d2 is independent on t. �
Proof of continuity Fix α > 0, t0 ∈ T, ζ0 ∈ ∂Gt0 , and z0 ∈ ̂Gt0 . Let K0 be a compact
subset of˜Gt0 , containing in its interior the setGt0 ∪{z0}. In the sequel, we shall use the
following convention: whenever we say that the triple (s, ξ, w) is near to (t0, ζ0, z0),
it will carry the additional information that ξ ∈ ∂Gs, w ∈ ̂Gs , unless explicitly stated
otherwise.

Observe that for (s, ξ) close to (t0, ζ0) (even without requiring that ξ ∈ ∂Gs), and
any z ∈ U ′ we have

|Pt0(z; ζ0) − Ps(z; ξ)| < M0α

with some positive M0. In particular, for w close to z0 the following estimate is true

|Pt0(z0; ζ0) − Ps(w; ξ)| < M1α,

where M1 := M0 + 1.
Further, using the fact that all the functions ϕt are continuous as functions of both

variables, we conclude that for (s, ξ) close to (t0, ζ0) we have

‖ϕt0(·; ζ0) − ϕs(·; ξ)‖U ′ < M2α

with some positive M2.
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For (s, ξ) near (t0, ζ0) we have

∥

∥

∥

∥

∂ϕt0

∂ z̄ j
(·; ζ0) − ∂ϕs

∂ z̄ j
(·; ξ)

∥

∥

∥

∥

U ′
< M3α

with some positive M3. Furthermore, for (s, ξ) close to (t0, ζ0) and z ∈ ˜Gs ∩ ˜Gt0 , the
following estimates hold true:

(I) If z /∈ B(ζ0,
η1
2 ) ∪ B(ξ,

η1
2 ), then

|αt0, j (z; ζ0) − αs, j (z; ξ)| < Lα,

where positive constant L does not depend on z as above. Indeed,

∣

∣

∣

∣

∣

∣

∂ϕt0
∂ z̄ j

(z; ζ0)

ϕ2
t0(z; ζ0)

−
∂ϕs
∂ z̄ j

(z; ξ)

ϕ2
s (z; ξ)

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

ϕ2
s (z; ξ)

∂ϕt0
∂ z̄ j

(z; ζ0) − ϕ2
t0(z; ζ0)

∂ϕs
∂ z̄ j

(z; ξ)

ϕ2
t0(z; ζ0)ϕ2

s (z; ξ)

∣

∣

∣

∣

∣

∣

≤ 64

C2
2η

4
1

∣

∣

∣

∣

ϕ2
s (z; ξ)

∂ϕt0

∂ z̄ j
(z; ζ0) − ϕ2

t0(z; ζ0)
∂ϕs

∂ z̄ j
(z; ξ)

∣

∣

∣

∣

≤ 64

C2
2η

4
1

(

‖ϕ2
s ‖U ′

∥

∥

∥

∥

∂ϕt0

∂ z̄ j
(·; ζ0)−∂ϕs

∂ z̄ j
(·; ξ)

∥

∥

∥

∥

U ′
+

∥

∥

∥

∥

∂ϕs

∂ z̄ j
(·; ξ)

∥

∥

∥

∥

U ′

∥

∥

∥ϕ2
s − ϕ2

t0

∥

∥

∥

U ′

)

≤ 64

C2
2η

4
1

(L1M3α + L2M2α) =: Lα,

where the first inequality is the consequence of (3.2).
(II) If z ∈ B(ζ0,

η1
2 ) ∪ B(ξ,

η1
2 ):

Observe that letting ξ close to ζ0, we may make the balls arbitrarily close to each
other. Using then the assumption (3), the fact that η were chosen to be strictly

smaller than C2
η21
8 , and the strictness of uniform estimate (3.2), we see that for

(s, ξ) close enough to (t0, ζ0) the estimate similar to the previous one holds true
for z ∈ S :=

⋃

w:‖w−ζ0‖= η1
2

B(w, γ ) with some sufficiently small γ > 0 (and

is independent on such z). Additionally, (s, ξ) may be chosen so that S′ :=
(B(ζ0,

η1
2 ) ∪ B(ξ,

η1
2 ))\S ⊂ B(ζ0,

η1
2 ) ∩ B(ξ,

η1
2 ).

Noting that for z ∈ S′ and (s, ξ) as above αt0, j (z; ζ0) = αs, j (z; ξ) = 0, we conclude
that

‖αt0(·; ζ0) − αs(·; ξ)‖
˜Gt0∩˜Gs

≤ M4α

with some positive M4.

Ofcourse Gt0 ⊂ ˜Gt0 . This yields that for s close to t0 we have Gt0 ⊂ ˜Gs as well as
Gs ⊂ ˜Gt0 (the assumption (3) remains true for the family (˜Gt )t∈T ). For s close to t0
we may now pick some Gt0,s , a strictly pseudoconvex domain with smooth boundary
and such that
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2474 A. Lewandowski

Gs ∪ Gt0 ⊂ K0 ⊂⊂ Gt0,s ⊂⊂ ˜Gs ∩ ˜Gt0 .

Again thanks to the property (3), Gt0,s may be chosen independently of s if s is close
enough to t0. For such s, denote it by Gt0 . Then, using Lemma 2 from [7], we find
some positive constant � such that

‖vt0(·; ζ0) − vs(·; ξ)‖K0 ≤ �‖αt0(·; ζ0) − αs(·; ξ)‖Gt0 ≤ �M4α =: M5α.

Notice that � may be chosen independently of s. Consequently, for (s, ξ, w) close to
(t0, ζ0, z0) there is

|vt0(z0; ζ0) − vs(w; ξ)| ≤ |vt0(z0; ζ0) − vt0(w; ζ0)| + |vt0(w; ζ0) − vs(w; ξ)| ≤ M6α

for some positive M6 (use the smoothness of vt0(·; ζ0)).
There are two cases to be considered:

Case 1. z0 ∈ Ht0,ζ0 ∩ intK0. Then ϕt0(z0; ζ0) �= 0 and for (s, ξ, w) near (t0, ζ0, z0)
we have ϕs(w; ξ) �= 0. For such (s, ξ, w) we have

| ft0(z0; ζ0) − fs(w; ξ)| ≤
∣

∣

∣

∣

1

ϕt0(z0; ζ0)
− 1

ϕs(w; ξ)

∣

∣

∣

∣

+ |vt0(z0; ζ0) − vs(w; ξ)|

≤
∣

∣

∣

∣

ϕs(w; ξ) − ϕt0(z0; ζ0)

ϕt0(z0; ζ0)ϕs(w; ξ)

∣

∣

∣

∣

+ M6α.

Considering the last but one term, its denominator is bounded below by some positive
constant for (s, ξ, w) close to (t0, ζ0, z0), and the numerator is estimated from above
by (M2 + 1)α. Thus for (s, ξ, w) close to (t0, ζ0, z0)

| ft0(z0; ζ0) − fs(w; ξ)| ≤ M7α

for some positive M7.

In our situation, the function gt0(·; ζ0) is holomorphic in a neighborhood of z0
and so is gs(·; ξ) for (s, ξ) close to (t0, ζ0). We conclude that for (s, ξ, w) close to
(t0, ζ0, z0) there is

|gt0(z0; ζ0) − gs(w; ξ)| ≤ M8α

for some positive M8, and

|ht0(z0; ζ0) − hs(w; ξ)| = ∣

∣exp(−gt0(z0; ζ0)) − exp(−gs(w; ξ))
∣

∣ ≤ M9α

for some positive M9.

Case 2. z0 ∈ (˜Gt0 ∩ B(ζ0, η2)) ∩ intKt0 .
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(I) Suppose ϕt0(z0; ζ0) �= 0.
It is equivalent to Pt0(z0; ζ0) �= 0. This yields that Ps(w; ξ) �= 0 for (s, ξ, w)

close to (t0, ζ0, z0). Then

|gt0(z0; ζ0) − gs(w; ξ)|
=

∣

∣

∣

∣

Pt0(z0; ζ0)

1 − Pt0(z0; ζ0)(vt0(z0; ζ0) − C4)
− Ps(w; ξ)

1 − Ps(w; ξ)(vs(w; ξ) − C4)

∣

∣

∣

∣

≤ N |Pt0(z0; ζ0) − Ps(w; ξ)| + N |Pt0(z0; ζ0)Ps(w; ξ)‖vt0(z0; ζ0) − vs(w; ξ)|
≤ NM1α + N ′M6α =: M10α,

and similarly as in the previous case

|ht0(z0; ζ0) − hs(w; ξ)| ≤ M11α

with some positive N , N ′, M10, and M11.

(II) Suppose ϕt0(z0; ζ0) = 0.
This is equivalent to Pt0(z0; ζ0) = 0. Then for some positive ρ we have
B(z0, ρ) ⊂⊂ K0 ∩ B(ζ0, η2). Similarly, for (s, ξ) close to (t0, ζ0) there is
B(z0, ρ) ⊂⊂ K0 ∩ B(ξ, η2). Therefore, because of the choice of d1 in (3.3),
for (s, ξ, w) close to (t0, ζ0, z0), w ∈ B(z0,

ρ
2 ) there is

|ht0(w; ζ0) − hs(w; ξ)| ≤ |1 − ht0(w; ζ0)| + |1 − hs(w; ξ)|
≤ d1(‖w − ζ0‖ + ‖w − ξ‖) ≤ 2d1η2.

Consequently, since the functions ht0(·; ζ0)−hs(·; ξ) are holomorphic in suitable
neighborhood of z0 for (s, ξ) close to (t0, ζ0), for some positive ρ̃ <

ρ
2 , for every

x, y ∈ B(z0,
ρ̃
2 ) we have

|ht0(x; ζ0) − hs(x; ξ) − ht0(y; ζ0) + hs(y; ξ)| ≤ α. (3.4)

Moreover, ρ̃ may be chosen so that for v,w ∈ B(z0,
ρ̃
2 ) there is

|ht0(v; ζ0) − ht0(w; ζ0)| ≤ α, (3.5)

by continuity of ht0(·; ζ0). Fix some w0 ∈ B(z0,
ρ̃
2 ) such that Pt0(w0; ζ0) �= 0.

Then for (s, ξ) near (t0, ζ0), by virtue of the subcase (I), we have

|ht0(w0; ζ0) − hs(w0; ξ)| ≤ α.

Finally, for w ∈ B(z0,
ρ̃
2 ) and (s, ξ) close to (t0, ζ0) we have

|ht0(z0; ζ0) − hs(w; ξ)| ≤ |ht0(z0; ζ0) − ht0(w0; ζ0)| + |ht0(w0; ζ0) − hs(w0; ξ)|
+|hs(w0; ξ) − hs(w; ξ)| ≤ α + α + 2α = 4α,
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where the last estimate follows from (3.4) and (3.5), which leads us to the con-
clusion. �
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