9 research outputs found

    Role of p85α in neutrophil extra- and intracellular reactive oxygen species generation

    Get PDF
    Drug resistance is a growing problem that necessitates new strategies to combat pathogens. Neutrophil phagocytosis and production of intracellular ROS, in particular, has been shown to cooperate with antibiotics in the killing of microbes. This study tested the hypothesis that p85α, the regulatory subunit of PI3K, regulates production of intracellular ROS. Genetic knockout of p85α in mice caused decreased expression of catalytic subunits p110α, p110β, and p110δ, but did not change expression levels of the NADPH oxidase complex subunits p67phox, p47phox, and p40phox. When p85α, p55α, and p50α (all encoded by Pik3r1) were deleted, there was an increase in intracellular ROS with no change in phagocytosis in response to both Fcγ receptor and complement receptor stimulation. Furthermore, the increased intracellular ROS correlated with significantly improved neutrophil killing of both methicillin-susceptible and methicillin-resistant S. aureus. Our findings suggest inhibition of p85α as novel approach to improving the clearance of resistant pathogens

    Enhancing Logical Reasoning of Large Language Models through Logic-Driven Data Augmentation

    Full text link
    Combining large language models with logical reasoning enhance their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges to gathering reliable data from web for building comprehensive training datasets, subsequently affecting the performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logic structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into texts to create augmented data. Notably, our methodology is architecture-agnostic and enhances generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and fine-tuning discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as logical reasoning reading comprehension, textual entailment, and natural language inference. Furthermore, our method ranked first on the ReClor leaderboard \url{https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347}. The source code and data are publicly available \url{https://github.com/Strong-AI-Lab/Logical-Equivalence-driven-AMR-Data-Augmentation-for-Representation-Learning}.Comment: Accepted for oral presentation at the LLM@IJCAI 2023 non-archival symposiu

    Multi-scale Graph Fusion for Co-saliency Detection

    No full text
    The key challenge of co-saliency detection is to extract discriminative features to distinguish the common salient foregrounds from backgrounds in a group of relevant images. In this paper, we propose a new co-saliency detection framework which includes two strategies to improve the discriminative ability of the features. Specifically, on one hand, we segment each image to semantic superpixel clusters as well as generate different scales/sizes of images for each input image by the VGG-16 model. Different scales capture different patterns of the images. As a result, multi-scale images can capture various patterns among all images by many kinds of perspectives. Second, we propose a new method of Graph Convolutional Network (GCN) to fine-tune the multi-scale features, aiming at capturing the common information among the features from all scales and the private or complementary information for the feature of each scale. Moreover, the proposed GCN method jointly conducts multi-scale feature fine-tune, graph learning, and feature learning in a unified framework. We evaluated our method on three benchmark data sets, compared to state-of-the-art co-saliency detection methods. Experimental results showed that our method outperformed all comparison methods in terms of different evaluation metrics

    Point Cloud Deep Learning Network Based on Balanced Sampling and Hybrid Pooling

    No full text
    The automatic semantic segmentation of point cloud data is important for applications in the fields of machine vision, virtual reality, and smart cities. The processing capability of the point cloud segmentation method with PointNet++ as the baseline needs to be improved for extremely imbalanced point cloud scenes. To address this problem, in this study, we designed a weighted sampling method based on farthest point sampling (FPS), which adjusts the sampling weight value according to the loss value of the model to equalize the sampling process. We also introduced the relational learning of the neighborhood space of the sampling center point in the feature encoding process, where the feature importance is distinguished by using a self-attention model. Finally, the global–local features were aggregated and transmitted using the hybrid pooling method. The experimental results of the six-fold crossover experiment showed that on the S3DIS semantic segmentation dataset, the proposed network achieved 9.5% and 11.6% improvement in overall point-wise accuracy (OA) and mean of class-wise intersection over union (MIoU), respectively, compared with the baseline. On the Vaihingen dataset, the proposed network achieved 4.2% and 3.9% improvement in OA and MIoU, respectively, compared with the baseline. Compared with the segmentation results of other network models on public datasets, our algorithm achieves a good balance between OA and MIoU

    PointNAC: Copula-Based Point Cloud Semantic Segmentation Network

    No full text
    Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities
    corecore