24 research outputs found

    Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.

    Get PDF
    BACKGROUND: Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. RESULTS: We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos - target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. CONCLUSION: We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the extent of the shared regulatory sequence across TFs and cell types under study. Importantly, a large part of the shared regulatory sequence is repurposed on the other species. This sequence, fueled by turnover events, provides a strong case for exaptation in regulatory elements

    Comparison of anticoagulation quality between acenocoumarol and warfarin in patients with mechanical prosthetic heart valves: Insights from the nationwide PLECTRUM study

    Get PDF
    Vitamin K antagonists are indicated for the thromboprophylaxis in patients with mechanical prosthetic heart valves (MPHV). However, it is unclear whether some differences between acenocoumarol and warfarin in terms of anticoagulation quality do exist. We included 2111 MPHV patients included in the nationwide PLECTRUM registry. We evaluated anticoagulation quality by the time in therapeutic range (TiTR). Factors associated with acenocoumarol use and with low TiTR were investigated by multivariable logistic regression analysis. Mean age was 56.8 ± 12.3 years; 44.6% of patients were women and 395 patients were on acenocoumarol. A multivariable logistic regression analysis showed that patients on acenocoumarol had more comorbidities (i.e., ≥3, odds ratio (OR) 1.443, 95% confidence interval (CI) 1.081-1.927, p = 0.013). The mean TiTR was lower in the acenocoumarol than in the warfarin group (56.1 ± 19.2% vs. 61.6 ± 19.4%, p < 0.001). A higher prevalence of TiTR (<60%, <65%, or <70%) was found in acenocoumarol users than in warfarin ones (p < 0.001 for all comparisons). Acenocoumarol use was associated with low TiTR regardless of the cutoff used at multivariable analysis. A lower TiTR on acenocoumarol was found in all subgroups of patients analyzed according to sex, hypertension, diabetes, age, valve site, atrial fibrillation, and INR range. In conclusion, anticoagulation quality was consistently lower in MPHV patients on acenocoumarol compared to those on warfarin

    Fast and compact matching statistics analytics.

    No full text
    Fast, lightweight methods for comparing the sequence of ever larger assembled genomes from ever growing databases are increasingly needed in the era of accurate long reads and pan-genome initiatives. Matching statistics is a popular method for computing whole-genome phylogenies and for detecting structural rearrangements between two genomes, since it is amenable to fast implementations that require a minimal setup of data structures. However, current implementations use a single core, take too much memory to represent the result, and do not provide efficient ways to analyze the output in order to explore local similarities between the sequences

    Efficient Tools for Comparative Subword Analysis

    No full text
    This paper introduces an efficient implementation of approaches to alignment-free comparative genome analysis and genome-based phylogeny relying on substring composition. Distances derived from substring statistics have been proposed recently as a meaningful alternative to distances derived from sequence alignment. In particular, procaryote phylogenies based on comparative 5- and 6-mer analysis of whole proteomes have successfully been worked out. The present implementation extends the computation of composition-based distances so as to involve allk-mers for anyk up to any preset m aximum length K (including K = ∞). Remarkably, although there may be Θ(L2) distinct strings that occur in a given sequence of length L (and Θ(KL) of length k ≤ K), it is shown that composition-based distances as well as many other details of interest in comparative genome analysis can be computed in O(L) time and space (with a constant that is independent of the size of K, that is, the same constant works for all K). A typical run with 2 sequences of altogether 1.5 million characters computes their composition-based distance in about 2 s, a performance to be contrasted with the several hours needed, even when restricting attention to substrings of length at most 6, by the direct method in use. This paper • describes the details of this implementation—an implementation that allows the user to compute composition-based distances for a wide range of instances on data sets of unprecedented size which may be useful in assessing the validity of the approach and to fine-tune the identification of those values of k (or K) yielding the best separators and descriptors in correspondence with different inputs, • indicates how the proposed algorithm can also be used for other tasks related to the identification and comparative analysis of highly over- or under-represented (sub)strings in given genomes, meta-genomes, or any other sequence families of interest (e.g., all proteins encoded by a given genome, all strings of non-coding or regulatory RNA, all introns, etc.), • and thus conforms with the increasing need for radically new, fast, and massive techniques for comparative genome analysis

    Mechanical prosthetic heart valves: Quality of anticoagulation and thromboembolic risk. The observational multicenter PLECTRUM study

    No full text
    Background: Patients with a mechanical prosthetic heart valve implantation need to be treated with a vitamin K antagonist (VKA) due to a substantially high risk of thromboembolism. In this study we report data on patients with mechanical heart valves (MV), with the aim of evaluating the thromboembolic risk in relation to the type and site of implantation, quality of anticoagulation and risk factors associated with thromboembolism. Methods: Observational retrospective multicenter study among Centers affiliated to the Italian Federation of Anticoagulation Clinics (FCSA) on patients with MV implanted after 1990 and followed for the management of anticoagulation. Results: We analyzed 2357 patients with mechanical heart valves (55.2% males), followed for 24,081 years. During the follow-up, 164 thromboembolic events (0.67/100 pt-yrs) and 243 major bleedings (1.0/100 pt-yrs) occurred. The median Time in Therapeutic Range (TTR), calculated in all intended INR classes, was 60% (IQR 47–74%). The rates of thrombotic events were significantly higher in patients intended to stay at therapeutic ranges >INR 2.0–3.0. The presence of atrial fibrillation, history of thromboembolism and of mitral prosthesis were independently associated with thromboembolism. However, a bad quality of anticoagulation (TTR <47%, 25°percentile of our population) was not correlated with thromboembolism. Conclusions: A low rate of bleeding and thromboembolic events in patients with mechanical heart valves were found, despite the sub-optimal anticoagulation control. The thromboembolic risk was not associated with the low TTR
    corecore