72 research outputs found

    Functional treatment versus plaster for simple elbow dislocations (FuncSiE): a randomized trial

    Get PDF
    Background. Elbow dislocations can be classified as simple or complex. Simple dislocations are characterized by the absence of fractures, while complex dislocations are associated with fractures. After reduction of a simple dislocation, treatment options include immobilization in a static plaster for different periods of time or so-called functional treatment. Functional treatment is characterized by early active motion within the limits of pain with or without the use of a sling or hinged brace. Theoretically, functional treatment should prevent stiffness without introducing increased joint instability. The primary aim of this randomized controlled trial is to compare early functional treatment versus plaster immobilization following simple dislocations of the elbow. Methods/Design. The design of the study will be a multicenter randomized controlled trial of 100 patients who have sustained a simple elbow dislocation. After reduction of the dislocation, patients are randomized between a pressure bandage for 5-7 days and early functional treatment or a plaster in 90 degrees flexion, neutral position for pro-supination for a period of three weeks. In the functional group, treatment is started with early active motion within the limits of pain. Function, pain, and radiographic recovery will be evaluated at regular intervals over the subsequent 12 months. The primary outcome measure is the Quick Disabilities of the Arm, Shoulder, and Hand score. The secondary outcome measures are the Mayo Elbow Performance Index, Oxford elbow score, pain level at both sides, range of motion of the elbow joint at both sides, rate of secondary interventions and complication rates in both groups (secondary dislocation, instability, relaxation), health-related quality of life (Short-Form 36 and EuroQol-5D), radiographic appearance of the elbow joint (degenerative changes and heterotopic ossifications), costs, and cost-effectiveness. Discussion. The successful completion of this trial will provide evidence on the effectiveness of a functional treatment for the management of simple elbow dislocations. Trial Registration. The trial is registered at the Netherlands Trial Register (NTR2025)

    Shear behavior of DFDP-1 borehole samples from the Alpine Fault, New Zealand, under a wide range of experimental conditions

    Get PDF
    The Alpine Fault is a major plate-boundary fault zone that poses a major seismic hazard in southern New Zealand. The initial stage of the Deep Fault Drilling Project has provided sample material from the major lithological constituents of the Alpine Fault from two pilot boreholes. We use laboratory shearing experiments to show that the friction coefficient ” of fault-related rocks and their precursors varies between 0.38 and 0.80 depending on the lithology, presence of pore fluid, effective normal stress, and temperature. Under conditions appropriate for several kilometers depth on the Alpine Fault (100 MPa, 160 °C, fluid-saturated), a gouge sample located very near to the principal slip zone exhibits ” = 0.67, which is high compared with other major fault zones targeted by scientific drilling, and suggests the capacity for large shear stresses at depth. A consistent observation is that every major lithological unit tested exhibits positive and negative values of friction velocity dependence. Critical nucleation patch lengths estimated using representative values of the friction velocity-dependent parameter a−b and the critical slip distance D c , combined with previously documented elastic properties of the wall rock, may be as low as ~3 m. This small value, consistent with a seismic moment M o = ~4 × 1010 for an M w = ~1 earthquake, suggests that events of this size or larger are expected to occur as ordinary earthquakes and that slow or transient slip events are unlikely in the approximate depth range of 3–7 km

    Status Update and Interim Results from the Asymptomatic Carotid Surgery Trial-2 (ACST-2)

    Get PDF
    Objectives: ACST-2 is currently the largest trial ever conducted to compare carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with severe asymptomatic carotid stenosis requiring revascularization. Methods: Patients are entered into ACST-2 when revascularization is felt to be clearly indicated, when CEA and CAS are both possible, but where there is substantial uncertainty as to which is most appropriate. Trial surgeons and interventionalists are expected to use their usual techniques and CE-approved devices. We report baseline characteristics and blinded combined interim results for 30-day mortality and major morbidity for 986 patients in the ongoing trial up to September 2012. Results: A total of 986 patients (687 men, 299 women), mean age 68.7 years (SD ± 8.1) were randomized equally to CEA or CAS. Most (96%) had ipsilateral stenosis of 70-99% (median 80%) with contralateral stenoses of 50-99% in 30% and contralateral occlusion in 8%. Patients were on appropriate medical treatment. For 691 patients undergoing intervention with at least 1-month follow-up and Rankin scoring at 6 months for any stroke, the overall serious cardiovascular event rate of periprocedural (within 30 days) disabling stroke, fatal myocardial infarction, and death at 30 days was 1.0%. Conclusions: Early ACST-2 results suggest contemporary carotid intervention for asymptomatic stenosis has a low risk of serious morbidity and mortality, on par with other recent trials. The trial continues to recruit, to monitor periprocedural events and all types of stroke, aiming to randomize up to 5,000 patients to determine any differential outcomes between interventions. Clinical trial: ISRCTN21144362. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved

    Image-based estimation and nonparametric modeling:Towards enhanced geometric calibration of an X-ray system

    No full text
    \u3cp\u3eGeometric calibrations of medical imaging systems are crucial to allow for advanced (X-ray) imaging techniques. Developments in medical procedures, lightweight system design and the growing costs of healthcare, leads to the desire for simpler and faster calibration approaches. The aim of this paper is to present a novel approach to enhance system calibrations for a wide range of imaging applications. The method is based on the introduction of small markers within the line of sight of the system, by virtue of a small mechanical adjustment to the system. By detecting markers in the X-ray images, displacements between the systems X-ray source and detector are in-situ measured. Additionally, the approach can be used to obtain nonparametric models of the dynamics of the mechanical system, enabling advanced observer-based estimation approaches. The potential of the method is illustrated by experimental results.\u3c/p\u3

    The risk of occlusion and associated events in the Asymptomatic Carotid Surgery Trial: a 10-year prospective study

    No full text
    This study analyzes the risk of occlusion and associated neurological events in patients with severe asymptomatic carotid artery stenosis included in the ACST-1 trial
    • 

    corecore