15 research outputs found

    Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls. Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS

    Genotypic resistance determined by whole genome sequencing versus phenotypic resistance in 234 Escherichia coli isolates

    No full text
    Abstract Whole genome sequencing (WGS) enables detailed characterization of bacteria at single nucleotide resolution. It provides data about acquired resistance genes and mutations leading to resistance. Although WGS is becoming an essential tool to predict resistance patterns accurately, comparing genotype to phenotype with WGS is still in its infancy. Additional data and validation are needed. In this retrospective study, we analysed 234 E. coli isolates from positive blood cultures using WGS as well as microdilution for 11 clinically relevant antibiotics, to compare the two techniques. We performed whole genome sequencing analyses on 234 blood culture isolates (genotype) to detect acquired antibiotic resistance. Minimal inhibitory concentrations (MIC) for E. coli were performed for amoxicillin, cefepime, cefotaxime, ceftazidime, meropenem, amoxicillin/clavulanic acid, piperacillin/tazobactam, amikacin, gentamicin, tobramycin, and ciprofloxacin, using the ISO 20776-1 standard broth microdilution method as recommended by EUCAST (phenotype). We then compared the two methods for statistical ‘agreement’. A perfect (100%) categorical agreement between genotype and phenotype was observed for gentamicin and meropenem. However, no resistance to meropenem was observed. A high categorical agreement (> 95%) was observed for amoxicillin, cefepime, cefotaxime, ceftazidime, amikacin, and tobramycin. A categorical agreement lower than 95% was observed for amoxicillin/clavulanic acid, piperacillin/tazobactam, and ciprofloxacin. Most discrepancies occurred in isolates with MICs within ± 1 doubling dilution of the breakpoint and 22.73% of the major errors were samples that tested phenotypically susceptible at higher antibiotic exposure and were therefore considered as ‘not resistant’. This study shows that WGS can be used as a valuable tool to predict phenotypic resistance against most of the clinically relevant antibiotics used for the treatment of E. coli bloodstream infections

    Altered vesicular glutamate transporter expression in human temporal lobe epilepsy with hippocampal sclerosis

    Get PDF
    Vesicular glutamate transporters (VGLUTs) are responsible for loading glutamate into synaptic vesicles. Altered VGLUT protein expression has been suggested to affect quantal size and glutamate release under both physiological and pathological conditions. In this study, we investigated mRNA and protein expression levels of the three VGLUT subtypes in hippocampal tissue of patients suffering from temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS), International League Against Epilepsy type 1 (ILAE type 1) compared to autopsy controls, using quantitative polymerase chain reaction and semi-quantitative western blotting. mRNA expression levels of the VGLUTs are unaffected in hippocampal epileptic tissue compared to autopsy controls. At the protein level, VGLUT1 expression remains unaltered, while VGLUT2 is significantly decreased and VGLUT3 protein is significantly increased in hippocampal biopsies from TLE patients compared to controls. Our findings at the protein level can be explained by previously described histopathological changes observed in HS. Although VGLUTs have been repeatedly investigated in distinct rodent epilepsy models, their expression levels were hitherto not fully unraveled in the most difficult-to-treat form of epilepsy: TLE with HS ILAE type 1. We here, demonstrate for the first time that VGLUT2 protein expression is significantly decreased and VGLUT3 protein is significantly increased in the hippocampus of patients suffering from TLE with HS ILAE type 1 compared to autopsy controls

    External Quality Assessment of SARS-CoV-2 Sequencing: an ESGMD-SSM Pilot Trial across 15 European Laboratories.

    No full text
    This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment
    corecore