578 research outputs found
Country Snapshot North Macedonia
A brief summary of the history and current status of religion in North Macedonia
Reasoning about Data Repetitions with Counter Systems
We study linear-time temporal logics interpreted over data words with
multiple attributes. We restrict the atomic formulas to equalities of attribute
values in successive positions and to repetitions of attribute values in the
future or past. We demonstrate correspondences between satisfiability problems
for logics and reachability-like decision problems for counter systems. We show
that allowing/disallowing atomic formulas expressing repetitions of values in
the past corresponds to the reachability/coverability problem in Petri nets.
This gives us 2EXPSPACE upper bounds for several satisfiability problems. We
prove matching lower bounds by reduction from a reachability problem for a
newly introduced class of counter systems. This new class is a succinct version
of vector addition systems with states in which counters are accessed via
pointers, a potentially useful feature in other contexts. We strengthen further
the correspondences between data logics and counter systems by characterizing
the complexity of fragments, extensions and variants of the logic. For
instance, we precisely characterize the relationship between the number of
attributes allowed in the logic and the number of counters needed in the
counter system.Comment: 54 page
Deciding regular grammar logics with converse through first-order logic
We provide a simple translation of the satisfiability problem for regular
grammar logics with converse into GF2, which is the intersection of the guarded
fragment and the 2-variable fragment of first-order logic. This translation is
theoretically interesting because it translates modal logics with certain frame
conditions into first-order logic, without explicitly expressing the frame
conditions.
A consequence of the translation is that the general satisfiability problem
for regular grammar logics with converse is in EXPTIME. This extends a previous
result of the first author for grammar logics without converse. Using the same
method, we show how some other modal logics can be naturally translated into
GF2, including nominal tense logics and intuitionistic logic.
In our view, the results in this paper show that the natural first-order
fragment corresponding to regular grammar logics is simply GF2 without extra
machinery such as fixed point-operators.Comment: 34 page
Satisfiability of CTL* with constraints
We show that satisfiability for CTL* with equality-, order-, and
modulo-constraints over Z is decidable. Previously, decidability was only known
for certain fragments of CTL*, e.g., the existential and positive fragments and
EF.Comment: To appear at Concur 201
Modal Logics with Hard Diamond-free Fragments
We investigate the complexity of modal satisfiability for certain
combinations of modal logics. In particular we examine four examples of
multimodal logics with dependencies and demonstrate that even if we restrict
our inputs to diamond-free formulas (in negation normal form), these logics
still have a high complexity. This result illustrates that having D as one or
more of the combined logics, as well as the interdependencies among logics can
be important sources of complexity even in the absence of diamonds and even
when at the same time in our formulas we allow only one propositional variable.
We then further investigate and characterize the complexity of the
diamond-free, 1-variable fragments of multimodal logics in a general setting.Comment: New version: improvements and corrections according to reviewers'
comments. Accepted at LFCS 201
Reasoning about transfinite sequences
We introduce a family of temporal logics to specify the behavior of systems
with Zeno behaviors. We extend linear-time temporal logic LTL to authorize
models admitting Zeno sequences of actions and quantitative temporal operators
indexed by ordinals replace the standard next-time and until future-time
operators. Our aim is to control such systems by designing controllers that
safely work on -sequences but interact synchronously with the system in
order to restrict their behaviors. We show that the satisfiability problem for
the logics working on -sequences is EXPSPACE-complete when the
integers are represented in binary, and PSPACE-complete with a unary
representation. To do so, we substantially extend standard results about LTL by
introducing a new class of succinct ordinal automata that can encode the
interaction between the different quantitative temporal operators.Comment: 38 page
On the Complexity of Temporal-Logic Path Checking
Given a formula in a temporal logic such as LTL or MTL, a fundamental problem
is the complexity of evaluating the formula on a given finite word. For LTL,
the complexity of this task was recently shown to be in NC. In this paper, we
present an NC algorithm for MTL, a quantitative (or metric) extension of LTL,
and give an NCC algorithm for UTL, the unary fragment of LTL. At the time of
writing, MTL is the most expressive logic with an NC path-checking algorithm,
and UTL is the most expressive fragment of LTL with a more efficient
path-checking algorithm than for full LTL (subject to standard
complexity-theoretic assumptions). We then establish a connection between LTL
path checking and planar circuits, which we exploit to show that any further
progress in determining the precise complexity of LTL path checking would
immediately entail more efficient evaluation algorithms than are known for a
certain class of planar circuits. The connection further implies that the
complexity of LTL path checking depends on the Boolean connectives allowed:
adding Boolean exclusive or yields a temporal logic with P-complete
path-checking problem
The complexity of linear-time temporal logic over the class of ordinals
We consider the temporal logic with since and until modalities. This temporal
logic is expressively equivalent over the class of ordinals to first-order
logic by Kamp's theorem. We show that it has a PSPACE-complete satisfiability
problem over the class of ordinals. Among the consequences of our proof, we
show that given the code of some countable ordinal alpha and a formula, we can
decide in PSPACE whether the formula has a model over alpha. In order to show
these results, we introduce a class of simple ordinal automata, as expressive
as B\"uchi ordinal automata. The PSPACE upper bound for the satisfiability
problem of the temporal logic is obtained through a reduction to the
nonemptiness problem for the simple ordinal automata.Comment: Accepted for publication in LMC
The logic of where and while in the 13th and 14th centuries.
Medieval analyses of molecular propositions include many non-truthfunctional connectives
in addition to the standard modern binary connectives (conjunction, disjunction,
and conditional). Two types of non-truthfunctional molecular propositions
considered by a number of 13th- and 14th-century authors are temporal and local
propositions, which combine atomic propositions with ‘while’ and ‘where’. Despite
modern interest in the historical roots of temporal and tense logic, medieval analyses
of ‘while’ propositions are rarely discussed in modern literature, and analyses of
‘where’ propositions are almost completely overlooked. In this paper we introduce
13th- and 14th-century views on temporal and local propositions, and connect the
medieval theories with modern temporal and spatial counterparts
- …
