27 research outputs found

    Altered Gene Expression in Pulmonary Tissue of Tryptophan Hydroxylase-1 Knockout Mice: Implications for Pulmonary Arterial Hypertension

    Get PDF
    The use of fenfluramines can increase the risk of developing pulmonary arterial hypertension (PAH) in humans, but the mechanisms responsible are unresolved. A recent study reported that female mice lacking the gene for tryptophan hydroxylase-1 (Tph1(−/−) mice) were protected from PAH caused by chronic dexfenfluramine, suggesting a pivotal role for peripheral serotonin (5-HT) in the disease process. Here we tested two alternative hypotheses which might explain the lack of dexfenfluramine-induced PAH in Tph1(−/−) mice. We postulated that: 1) Tph1(−/−) mice express lower levels of pulmonary 5-HT transporter (SERT) when compared to wild-type controls, and 2) Tph1(−/−) mice display adaptive changes in the expression of non-serotonergic pulmonary genes which are implicated in PAH. SERT was measured using radioligand binding methods, whereas gene expression was measured using microarrays followed by quantitative real time PCR (qRT-PCR). Contrary to our first hypothesis, the number of pulmonary SERT sites was modestly up-regulated in female Tph1(−/−) mice. The expression of 51 distinct genes was significantly altered in the lungs of female Tph1(−/−) mice. Consistent with our second hypothesis, qRT-PCR confirmed that at least three genes implicated in the pathogenesis of PAH were markedly up-regulated: Has2, Hapln3 and Retlna. The finding that female Tph1(−/−) mice are protected from dexfenfluramine-induced PAH could be related to compensatory changes in pulmonary gene expression, in addition to reductions in peripheral 5-HT. These observations emphasize the intrinsic limitation of interpreting data from studies conducted in transgenic mice that are not fully characterized

    Serotonylation of Vascular Proteins Important to Contraction

    Get PDF
    BACKGROUND:Serotonin (5-hydroxytryptamine, 5-HT) was named for its source (sero-) and ability to modify smooth muscle tone (tonin). The biological effects of 5-HT are believed to be carried out by stimulation of serotonin receptors at the plasma membrane. Serotonin has recently been shown to be synthesized in vascular smooth muscle and taken up from external sources, placing 5-HT inside the cell. The enzyme transglutaminase uses primary amines such as 5-HT to covalently modify proteins on glutamine residues. We tested the hypothesis that 5-HT is a substrate for transglutaminase in arterial vascular smooth muscle, with protein serotonylation having physiological function. METHODOLOGY/PRINCIPAL FINDINGS:The model was the rat aorta and cultured aortic smooth muscle cells. Western analysis demonstrated that transglutaminase II was present in vascular tissue, and transglutaminase activity was observed as a cystamine-inhibitable incorporation of the free amine pentylamine-biotin into arterial proteins. Serotonin-biotin was incorporated into alpha-actin, beta-actin, gamma-actin, myosin heavy chain and filamin A as shown through tandem mass spectrometry. Using antibodies directed against biotin or 5-HT, immunoprecipitation and immunocytochemistry confirmed serotonylation of smooth muscle alpha-actin. Importantly, the alpha-actin-dependent process of arterial isometric contraction to 5-HT was reduced by cystamine. CONCLUSIONS:5-HT covalently modifies proteins integral to contractility and the cytoskeleton. These findings suggest new mechanisms of action for 5-HT in vascular smooth muscle and consideration for intracellular effects of primary amines

    The role of sex in the pathophysiology of pulmonary hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular resistance and pulmonary artery remodelling as result of increased vascular tone and vascular cell proliferation, respectively. Eventually, this leads to right heart failure. Heritable PAH is caused by a mutation in the bone morphogenetic protein receptor-II (BMPR-II). Female susceptibility to PAH has been known for some time, and most recent figures show a female-to-male ratio of 4:1. Variations in the female sex hormone estrogen and estrogen metabolism modify FPAH risk, and penetrance of the disease in BMPR-II mutation carriers is increased in females. Several lines of evidence point towards estrogen being pathogenic in the pulmonary circulation, and thus increasing the risk of females developing PAH. Recent studies have also suggested that estrogen metabolism may be crucial in the development and progression of PAH with studies indicating that downstream metabolites such as 16α-hydroxyestrone are upregulated in several forms of experimental pulmonary hypertension (PH) and can cause pulmonary artery smooth muscle cell proliferation and subsequent vascular remodelling. Conversely, other estrogen metabolites such as 2-methoxyestradiol have been shown to be protective in the context of PAH. Estrogen may also upregulate the signalling pathways of other key mediators of PAH such as serotonin

    Gender, sex hormones and pulmonary hypertension

    Get PDF
    Most subtypes of pulmonary arterial hypertension (PAH) are characterized by a greater susceptibility to disease among females, although females with PAH appear to live longer after diagnosis. While this “estrogen paradoxȍ of enhanced female survival despite increased female susceptibility remains a mystery, recent progress has begun to shed light upon the interplay of sex hormones, the pathogenesis of pulmonary hypertension, and the right ventricular response to stress. For example, emerging data in humans and experimental models suggest that estrogens or differential sex hormone metabolism may modify disease risk among susceptible subjects, and that estrogens may interact with additional local factors such as serotonin to enhance the potentially damaging chronic effects of estrogens on the pulmonary vasculature. Regardless, it remains unclear why not all estrogenic compounds behave equally, nor why estrogens appear to be protective in certain settings but detrimental in others. The contribution of androgens and other compounds, such as dehydroepiandrosterone, to pathogenesis and possibly treatment must be considered as well. In this review, we will discuss the recent understandings on how estrogens, estrogen metabolism, dehydroepiandrosterone, and additional susceptibility factors may all contribute to the pathogenesis or potentially to the treatment of pulmonary hypertension, by evaluating current human, cell-based, and experimental model data

    Joining S100 proteins and migration:for better or for worse, in sickness and in health

    Get PDF
    The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel

    Serotonin and pulmonary hypertension—from bench to bedside?

    No full text
    The serotonin hypothesis of pulmonary arterial hypertension (PAH) arose owing to anorexigens, acting as indirect serotinergic agonists, causing PAH. However, it is now thought that serotonin plays an important role in the pathobiology of PAH per se. The rate-limiting enzyme in the synthesis of peripheral serotonin is tryptophan hydroxylase 1 (TPH1), serotonin can mediate pulmonary arterial smooth muscle cell proliferation via the serotonin transporter (SERT) and serotonin can induce pulmonary vasoconstriction via the 5-HT1B receptor in man. There is evidence that TPH1, SERT and 5-HT1B expression/activity can be upregulated in clinical PAH. This review discusses recent evidence implicating serotonin in the development of experimental and clinical PAH and suggests potential therapeutic target

    Pulmonary hypertension: therapeutic targets within the serotonin system

    No full text
    Pulmonary arterial hypertension (PAH) is characterized by a sustained and progressive elevation in pulmonary arterial pressure and pulmonary vascular remodelling leading to right heart failure and death. Prognosis is poor and novel therapeutic approaches are needed. The serotonin hypothesis of PAH originated in the 1960s after an outbreak of the disease was reported among patients taking the anorexigenic drugs aminorex and fenfluramine. These are indirect serotinergic agonists and serotonin transporter substrates. Since then many advances have been made in our understanding of the role of serotonin in the pathobiology of PAH. The rate-limiting enzyme in the synthesis of serotonin is tryprophan hydroxylase (Tph). Serotonin is synthesized, through Tph1, in the endothelial cells of the pulmonary artery and can then act on underlying pulmonary arterial smooth muscle cells and pulmonary arterial fibroblasts in a paracrine fashion causing constriction and remodelling. These effects of serotonin can be mediated through both the serotonin transporter and serotonin receptors. This review will discuss our current understanding of ‘the serotonin hypothesis' of PAH and highlight possible therapeutic targets within the serotonin system

    The serotonin transporter, gender, and 17ß oestradiol in the development of pulmonary arterial hypertension

    No full text
    <b>Aims</b> Idiopathic and familial forms of pulmonary arterial hypertension (PAH) predominantly affect females through an unknown mechanism. Activity of the serotonin transporter (SERT) may modulate the development of PAH, and mice overexpressing SERT (SERT+ mice) develop PAH and severe hypoxia-induced PAH. In the central nervous system, oestrogens influence activity of the serotonin system. Therefore, we examined the influence of gender on the development of PAH in SERT+ mice and how this is modulated by female hormones. <p></p> <b>Methods and results</b> PAH was assessed via measurement of right ventricular systolic pressure (RVSP), pulmonary vascular remodelling (PVR), and right ventricular hypertrophy. Male SERT+ mice did not develop PAH. Female SERT+ mice demonstrated increased RVSP and PVR and this was abolished by ovariectomy. Following exposure to hypoxia, SERT+ mice exhibited severe PAH and this was also attenuated by ovariectomy. Chronic administration of 17β oestradiol re-established the PAH phenotype in ovariectomized, normoxic, and hypoxic SERT+ mice. 17β oestradiol also up-regulated tryptophan hydroxylase-1 (TPH1), 5-hydroytryptamine1<sub>B</sub> (5-HT1<sub>B</sub>) receptor, and SERT expression in human pulmonary arterial smooth muscle cells (hPASMCs). 17β oestradiol stimulated hPASMC proliferation and this was inhibited by both the TPH inhibitor para-chlorophenylalanine and the 5-HT1<sub>B</sub> receptor antagonist SB224289. <p></p> <b>Conclusion</b> 17β oestradiol is critical to the development of PAH and severe hypoxia-induced PAH in female SERT+ mice. In hPASMCs, 17β oestradiol-induced proliferation is dependant on de novo serotonin synthesis and stimulation of the 5-HT1B receptor. These interactions between the serotonin system and 17β oestradiol may contribute to the increased risk of PAH associated with female gender. <p></p&gt
    corecore