509 research outputs found

    The right to food and food diversity in the Italian Constitution

    Get PDF
    Il contributo analizza la tutela apprestata dalla Costituzione italiana al diritto al cibo che, pur non essendo espressamente menzionato, viene ricavato attraverso l'analisi di principi ed azioni sottese alla nostra Carta che ne riconoscono il valore: il principio lavorista, la lotta alla povertà, la retribuzione del lavoratore...

    Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice

    Get PDF
    High sunlight can raise plant growth rates but can potentially cause cellular damage. The likelihood of deleterious effects is lowered by a sophisticated set of photoprotective mechanisms, one of the most important being the controlled dissipation of energy from chlorophyll within photosystem II (PSII) measured as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity remains uncertain because it momentarily reduces the quantum efficiency of photosynthesis. Here we used plants overexpressing the gene encoding a central regulator of NPQ, the protein PsbS, within a major crop species (rice) to assess the effect of photoprotection at the whole canopy scale. We accounted for canopy light interception, to our knowledge for the first time in this context. We show that in comparison to wild-type plants, psbS overexpressors increased canopy radiation use efficiency and grain yield in fluctuating light, demonstrating that photoprotective mechanisms should be altered to improve rice crop productivity

    Enhanced antitumoral activity of TLR7 agonists via activation of human endogenous retroviruses by HDAC inhibitors

    Get PDF
    In this work, we are reporting that “Shock and Kill”, a therapeutic approach designed to eliminate latent HIV from cell reservoirs, is extrapolatable to cancer therapy. This is based on the observation that malignant cells express a spectrum of human endogenous retroviral elements (HERVs) which can be transcriptionally boosted by HDAC inhibitors. The endoretroviral gene HERV-V2 codes for an envelope protein, which resembles syncytins. It is significantly overexpressed upon exposure to HDAC inhibitors and can be effectively targeted by simultaneous application of TLR7/8 agonists, triggering intrinsic apoptosis. We demonstrated that this synergistic cytotoxic effect was accompanied by the functional disruption of the TLR7/8-NFκB, Akt/PKB, and Ras-MEK-ERK signalling pathways. CRISPR/Cas9 ablation of TLR7 and HERV-V1/V2 curtailed apoptosis significantly, proving the pivotal role of these elements in driving cell death. The effectiveness of this new approach was confirmed in ovarian tumour xenograft studies, revealing a promising avenue for future cancer therapies

    Mutations in Arabidopsis YCF20-like genes affect thermal dissipation of excess absorbed light energy

    Get PDF
    Plants dissipate excess absorbed light energy as heat to protect themselves from photo-oxidative stress. The Arabidopsis thaliananpq6 mutant affected in thermal dissipation was identified by its partial defect in the induction of nonphotochemical quenching of chlorophyll fluorescence (NPQ) by excess light. Positional cloning revealed that npq6 contains a frameshift mutation caused by a single base-pair deletion in the At5g43050 gene, which encodes a member of the hypothetical chloroplast open reading frame 20 (YCF20) family of proteins with unknown function(s). The YCF20 protein family is mostly conserved in oxygenic photosynthetic organisms including cyanobacteria, eukaryotic algae, and plants. Amino acid sequence comparison identified two other genes in Arabidopsis that encode similar proteins to NPQ6: At1g65420 and At3g56830. These three Arabidopsis proteins have functional chloroplast-targeting transit peptides. Using reverse genetics, a mutant with a T-DNA insertion within the At1g65420 gene was identified and shown to exhibit a low NPQ phenotype similar to that of npq6; therefore, At1g65420 was named NPQ7. In contrast, a knockdown mutant in the At3g56830 gene with lower transcript levels showed wild-type levels of NPQ. The npq6 npq7 double mutant had an additive NPQ defect, indicating that the YCF20 family members in Arabidopsis have overlapping functions affecting thermal dissipation

    In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation

    Get PDF
    Background. In eukaryotes the photosynthetic antenna system is composed of subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. The moss Physcomitrella patens is a member of a lineage that diverged from seed plants early after land colonization and therefore by studying this organism, we may gain insight into adaptations to the aerial environment. Principal Findings. In this study, we characterized the antenna protein multigene family in Physcomitrella patens, by sequence analysis as well as biochemical and functional investigations. Sequence identification and analysis showed that some antenna polypeptides, such as Lhcb3 and Lhcb6, are present only in land organisms, suggesting they play a role in adaptation to the sub-aerial environment. Our functional analysis which showed that photo-protective mechanisms in Physcomitrella patens are very similar to those in seed plants fits with this hypothesis. In particular, Physcomitrella patens also activates Non Photochemical Quenching upon illumination, consistent with the detection of an ortholog of the PsbS protein. As a further adaptation to terrestrial conditions, the content of Photosystem I low energy absorbing chlorophylls also increased, as demonstrated by differences in Lhca3 and Lhca4 polypeptide sequences, in vitro reconstitution experiments and low temperature fluorescence spectra. Conclusions. This study highlights the role of Lhc family members in environmental adaptation and allowed proteins associated with mechanisms of stress resistance to be identified within this large family

    Linking integrative plant physiology with agronomy to sustain future plant production

    Get PDF
    Sustainable production of high-quality food is one of today's major challenges of agriculture. To achieve this goal, a better understanding of plant physiological processes and a more integrated approach with respect to current agronomical practices are needed. In this review, various examples of cooperation between integrative plant physiology and agronomy are discussed, and this demonstrates the complexity of these interrelations. The examples are meant to stimulate discussions on how both research areas can deliver solutions to avoid looming food crises due to population growth and climate change. In the last decades, unprecedented progress has been made in the understanding of how plants grow and develop in a variety of environments and in response to biotic stresses, but appropriate management and interpretation of the resulting complex datasets remains challenging. After providing an historical overview of integrative plant physiology, we discuss possible avenues of integration, involving advances in integrative plant physiology, to sustain plant production in the current post-omics era. Finally, recommendations are provided on how to practice the transdisciplinary mindset required, emphasising a broader approach to sustainable production of high-quality food in the future, whereby all those who are involved are made partners in knowledge generation processes through transdisciplinary cooperation. © 2020 Elsevier B.V

    Arabidopsis thaliana PGR7 Encodes a Conserved Chloroplast Protein That Is Necessary for Efficient Photosynthetic Electron Transport

    Get PDF
    A significant fraction of a plant's nuclear genome encodes chloroplast-targeted proteins, many of which are devoted to the assembly and function of the photosynthetic apparatus. Using digital video imaging of chlorophyll fluorescence, we isolated proton gradient regulation 7 (pgr7) as an Arabidopsis thaliana mutant with low nonphotochemical quenching of chlorophyll fluorescence (NPQ). In pgr7, the xanthophyll cycle and the PSBS gene product, previously identified NPQ factors, were still functional, but the efficiency of photosynthetic electron transport was lower than in the wild type. The pgr7 mutant was also smaller in size and had lower chlorophyll content than the wild type in optimal growth conditions. Positional cloning located the pgr7 mutation in the At3g21200 (PGR7) gene, which was predicted to encode a chloroplast protein of unknown function. Chloroplast targeting of PGR7 was confirmed by transient expression of a GFP fusion protein and by stable expression and subcellular localization of an epitope-tagged version of PGR7. Bioinformatic analyses revealed that the PGR7 protein has two domains that are conserved in plants, algae, and bacteria, and the N-terminal domain is predicted to bind a cofactor such as FMN. Thus, we identified PGR7 as a novel, conserved nuclear gene that is necessary for efficient photosynthetic electron transport in chloroplasts of Arabidopsis

    Vertical Distribution of Epibenthic Freshwater Cyanobacterial Synechococcus spp. Strains Depends on Their Ability for Photoprotection

    Get PDF
    Epibenthic cyanobacteria often grow in environments where the fluctuation of light intensity and quality is extreme and frequent. Different strategies have been developed to cope with this problem depending on the distribution of cyanobacteria in the water column. and either constant or enhanced levels of carotenoids were assayed in phycocyanin-rich strains collected from 1.0 and 0.5 m water depths. Protein analysis revealed that while the amount of biliproteins remained constant in all strains during light stress and recovery, the amount of D1 protein from photosystem II reaction centre was strongly reduced under light stress conditions in strains from 7.0 m and 1.0 m water depth, but not in strains collected from 0.5 m depth. spp. strains, depending on their genetically fixed mechanisms for photoprotection
    corecore