12 research outputs found

    The effect of radiolabeled antibiotics on biofilm and microorganism within biofilm

    No full text
    The aim of this study was to investigate the 131I and 127I labeled linezolid and moxifloxacin effects of minimum inhibitory concentration, and minimum bactericidal concentration on mature biofilm and microorganism within the biofilm. Linezolid and moxifloxacin were labeled with 131I and 127I and chromatography studies were carried out with thin layer radiochromatograpy and high-pressure liquid radiochromatography techniques. Specific activities of radiolabeled LZD and MXF was found to be 53.3 ± 3.1 and 127.3 ± 1.1 MBq/µmol for [131I]LZD and 7.6 ± 0.02 and 55.6 ± 0.8 MBq/µmol for [131I]MXF, respectively. The minimum inhibitory concentration and Time-Kill of Linezolid and moxifloxacin alone and their 131I and 127I labeled forms were tested with a standard strain of meticillin-susceptible Staphylocıccus aureus. MIC values of LNZ and MXF were 2.96 nmol/mL (1 µg/ml) and 0.141 nmol/mL (0.062 µg/ml). Time Kills of MXF and LZD were found to be 0.06 and 1 μg, respectively. Antibiotics labeled with beta-emitting radioactive molecule may be a new theranostics strategy for biofilm infections. © 2018, Akadémiai Kiadó, Budapest, Hungary

    Radiosynthesis and biodistribution of 99mTc-trimethoprim: A novel radiolabeled antibiotic for bacterial infection imaging using experimental animals [99mTc-Trimethoprim’in radyosentezi ve biyodağılımı: Deney hayvanları kullanılarak bakteriyel enfeksiyon görüntüleme için yeni bir radyoişaretli antibiyotik]

    No full text
    In the present article, we focused on the radiolabeling and evaluation of 99mTc–TMH complex as a potential candidate for infection imaging in vivo. For this; Trimethoprim (TMH) used to treat bacterial infections was investigated to label with99mTc. Labeling was performed using thin (II) chloride as a reducing agent at room temperature for 1 h and radiochemical analysis involved thin layer radiochromatography (TLRC) and high pressure liquid radiochromatograpy (HPLRC) methods. The stability of labeled antibiotic was checked in the presence of rat blood serum at 37.C up to 180 min. The maximum radiolabeling yield was found to be 96±2% and remained constant at more than 85±1% even in rat serum for 180 min after radiolabeling. Static image of 99mTc-TMH in male rats demonstrated that important radiation signals are present in the infected site at first glance in 30 min. After 30 min the uptake of the 99mTc-TMH as ID/g% in the infected muscle (INM) and normal muscle (NM) of the rats were 7.5±1.5% and 5.00±1.2%, respectively. In the INM/NM ratio a desirable behavior was observed as the values for the INM/ NM increased up to 10.6. 99mTc-TMH prepared with high yield is able to localize well in the bacterially infected muscle of the rats. As a result,99mTc-TMH may be developed as a radiopharmaceutical agent to distinguish infection from inflammation by nuclear imaging. © 2018, Veteriner Fakultesi Dergisi. All rights reserved

    Radiosynthesis and biodistribution of 99mTc-Sulfamethoxazole: a novel molecule for in-vivo infection imaging

    No full text
    The aim of this study was to prepare 99mTc-Sulfamethoxazole complex and evaluate its efficiency as an infection imaging agent. The Sulfamethoxazole was labeled with 99mTc and its biological efficacy as a potential radio tracer for Staphylococcus aureus infection was investigated in bacterially infected Albino Wistar rats. The radiolabeling yield was found to be 95 ± 3.07% and remained constant at more than 93 ± 0.1% even in serum for 240 min after radiolabeling. 99mTc-Sulfamethoxazole prepared with high yield localized well in the bacterially infected muscle of the rats. 99mTc-Sulfamethoxazole may be developed as a radiopharmaceutical agent to distinguish infection from inflammation by nuclear imaging. © 2017, Springer Science+Business Media, LLC

    Cobalamin Deficiency Can Mask Depleted Body Iron Reserves

    Get PDF
    Vitamin B12 deficiency impairs DNA synthesis and causes erythroblast apoptosis, resulting in anaemia from ineffective erythropoiesis. Iron and cobalamin deficiency are found together in patients for various reasons. We have observed that cobalamin deficiency masks iron deficiency in some patients. We hypothesised that iron is not used by erythroblasts because of ineffective erythropoiesis due to cobalamin deficiency. Therefore, we aimed to demonstrate that depleted iron body reserves are masked by cobalamin deficiency. Seventy-five patients who were diagnosed with cobalamin deficiency were enrolled in this study. Complete blood counts and serum levels of iron, unsaturated iron binding capacity (UIBC), ferritin, vitamin B-12, and thyroid stimulant hormone were determined at diagnosis and after cobalamin therapy. Patients who had a combined deficiency at diagnosis and after cobalamin therapy were recorded. Before cobalamin therapy, we found increased serum iron levels (126.4 +/- A 63.4 A mu g/dL), decreased serum UIBC levels (143.7 +/- A 70.8 A mu g/dL), increased serum ferritin levels (192.5 +/- A 116.4 ng/mL), and increased transferrin saturation values (47.2 +/- A 23.5 %). After cobalamin therapy, serum iron levels (59.1 +/- A 30 A mu g/dL), serum ferritin levels (44.9 +/- A 38.9 ng/mL) and transferrin saturation values (17.5 +/- A 9.6 %) decreased, and serum UIBC levels (295.9 +/- A 80.6 A mu g/dL) increased. Significant differences were observed in all values (p < 0.0001). Seven patients (9.3 %) had iron deficiency before cobalamin therapy, 37 (49.3 %) had iron deficiency after cobalamin therapy, and a significant difference was detected between the proportions of patients who had iron deficiency (p < 0.0001). This study is important because insufficient data are available on this condition. Our results indicate that iron deficiency is common in patients with cobalamin deficiency, and that cobalamin deficiency can mask iron deficiency. Therefore, we suggest that all patients diagnosed with cobalamin deficiency should be screened for iron deficiency, particularly after cobalamin therapy
    corecore