69 research outputs found
Alterations in the plasma proteome persist ten months after recovery from mild to moderate SARS-CoV-2 infection
BackgroundLimited data are available describing the effects of SARS-CoV-2 breakthrough infections on the plasma proteome.MethodsPCR-positive SARS-CoV-2 patients, enrolled in a natural history study, underwent analysis of the plasma proteome. A prospective cohort of 66 unvaccinated and 24 vaccinated persons with different degrees of infection severity were evaluated acutely (within 40 days of symptom onset), and at three and ten months. Comparisons based on vaccination status alone and unsupervised hierarchical clustering were performed. A second cohort of vaccinated Omicron patients were evaluated acutely and at ten months.ResultsAcutely, unvaccinated patients manifested overexpression of proteins involved in immune and inflammatory responses, while vaccinated patients exhibited adaptive immune responses without significant inflammation. At three and ten months, only unvaccinated patients had diminished but sustained inflammatory (C3b, CCL15, IL17RE) and immune responses (DEFA5,TREM1). Both groups had underexpression of pathways essential for cellular function, signaling, and angiogenesis (AKT1, MAPK14, HSPB1) across phases. Unsupervised clustering, based on protein expression, identified four groups of patients with variable vaccination rates demonstrating that additional clinical factors influence the plasma proteome. The proteome of vaccinated Omicron patients did not differ from vaccinated pre-Omicron patients.ConclusionsVaccination attenuates the inflammatory response to SARS-CoV-2 infection across phases. However, at ten months after symptom onset, changes in the plasma proteome persist in both vaccinated and unvaccinated individuals, which may be relevant to post-acute sequelae of SARS-CoV-2 and other viral infections associated with post-acute infection syndromes
Distinct Peripheral Blood RNA Responses to Salmonella in Pigs Differing in Salmonella Shedding Levels: Intersection of IFNG, TLR and miRNA Pathways
Transcriptomic analysis of the response to bacterial pathogens has been reported for several species, yet few studies have investigated the transcriptional differences in whole blood in subjects that differ in their disease response phenotypes. Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of Salmonella is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers associated with the variance in Salmonella shedding following experimental inoculation, we initiated the first analysis of the whole blood transcriptional response induced by Salmonella. A population of pigs (n = 40) was inoculated with ST and peripheral blood and fecal Salmonella counts were collected between 2 and 20 days post-inoculation (dpi). Two groups of pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. Global transcriptional changes in response to ST inoculation were identified by Affymetrix Genechip® analysis of peripheral blood RNA at day 0 and 2 dpi. ST inoculation triggered substantial gene expression changes in the pigs and there was differential expression of many genes between LS and PS pigs. Analysis of the differential profiles of gene expression within and between PS and LS phenotypic classes identified distinct regulatory pathways mediated by IFN-γ, TNF, NF-κB, or one of several miRNAs. We confirmed the activation of two regulatory factors, SPI1 and CEBPB, and demonstrated that expression of miR-155 was decreased specifically in the PS animals. These data provide insight into specific pathways associated with extremes in Salmonella fecal shedding that can be targeted for further exploration on why some animals develop a carrier state. This knowledge can also be used to develop rational manipulations of genetics, pharmaceuticals, nutrition or husbandry methods to decrease Salmonella colonization, shedding and spread
Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney
Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation
Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk
Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk
Genetic Risk Score for Intracranial Aneurysms:Prediction of Subarachnoid Hemorrhage and Role in Clinical Heterogeneity
BACKGROUND: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. METHODS: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. RESULTS: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (β=-4.82×10(-3) per year [95% CI, -6.49×10(-3) to -3.14×10(-3)]; P=1.82×10(-8)), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). CONCLUSIONS: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH
OS2-10 Blade type nail designs cause more varus collaps than screw type nails in the treatment of elderly trochanteric fractures
Real-World Inpatient Use of Medications Repurposed for Coronavirus Disease 2019 in United States Hospitals, March–May 2020
Abstract
We report off-label use patterns for medications repurposed for coronavirus disease 2019 (COVID-19) at 318 US hospitals. Inpatient hydroxychloroquine use declined by 80%, whereas corticosteroids and tocilizumab were initiated 2 days earlier in May versus March 2020. Two thirds of ventilated COVID-19 patients were already receiving corticosteroids during March–May 2020, resembling pre-COVID use in mechanically ventilated influenza patients.</jats:p
Nicotinamide Antagonizes Lipopolysaccharide-Induced Hypoxic Cell Signals in Human Macrophages.
Mechanisms to control the immune response are important to pathogen evasion and host defense. Gram-negative bacteria are common pathogens that can activate host immune responses through their outer membrane component, LPS. Macrophage activation by LPS induces cell signals that promote hypoxic metabolism, phagocytosis, Ag presentation, and inflammation. Nicotinamide (NAM) is a vitamin B3 derivative and precursor in the formation of NAD, which is a required cofactor in cellular function. In this study, treatment of human monocyte-derived macrophages with NAM promoted posttranslational modifications that antagonized LPS-induced cell signals. Specifically, NAM inhibited AKT and FOXO1 phosphorylation, decreased p65/RelA acetylation, and promoted p65/RelA and hypoxia-inducible transcription factor-1α (HIF-1α) ubiquitination. NAM also increased prolyl hydroxylase domain 2 (PHD2) production, inhibited HIF-1α transcription, and promoted the formation of the proteasome, resulting in reduced HIF-1α stabilization, decreased glycolysis and phagocytosis, and reductions in NOX2 activity and the production of lactate dehydrogenase A. These NAM responses were associated with increased intracellular NAD levels formed through the salvage pathway. NAM and its metabolites may therefore decrease the inflammatory response of macrophages and protect the host against excessive inflammation but potentially increase injury through reduced pathogen clearance. Continued study of NAM cell signals in vitro and in vivo may provide insight into infection-associated host pathologies and interventions
2251. Estimating the Need for Novel Gram-Negative Active Antibiotics in US Hospitals
Abstract
Background
Assessing the unmet need for novel antibiotics could inform appropriate utilization, enrollment in trials and ensure balance in aligning incentives and investments in therapeutic development.
Methods
The Cerner Healthfacts electronic health record repository was queried to identify inpatient treatment opportunities for Gram-negative active agents (GNAA) displaying either difficult-to-treat resistance (DTR; resistance to all β-lactams including carbapenems and fluoroquinolones) or extended-spectrum cephalosporin resistance (ECR). The former was quantified by aggregating episodes of confirmed DTR infection (i.e., DTR strain isolated and concomitant antibiotic(s) received) or suspected (i.e., 1–2 days of empiric colistin/polymyxin-B or aminoglycosides and no DTR pathogen isolated). Aggregate days of therapy (DOT) were reported as a range, multiplying episodes by site-specific or uniform 14-day treatment durations, respectively. Recursive partition and cluster analyses were performed for hospital characteristics and contributions of outbreaks to DTR treatment opportunities, respectively.
Results
Between 2009 and 2015, across 2,996,271 encounters, 1,352 episodes of potential targeted treatment were identified, which combined with empiric treatment episodes, represent 39–138 DOT/10,000 encounters for a DTR-GNAA. Similarly, 9,535 episodes of potential targeted therapy for an ECR-GNAA were identified (representing 211-466 DOT/10,000 encounters). The most common candidate site and pathogens for DTR-GNAA were lower respiratory and A. baumannii and P. aeruginosa respectively; DTR bloodstream infections displayed the highest crude mortality at 45%. Enterobacteriaceae urinary infections dominated the ECR group. Teaching hospitals with ≥100 beds were the most likely to encounter a DTR infection; potential outbreaks contributed to 10.6% of DTR treatment opportunities.
Conclusion
The candidate population for new antibacterials directed against highly resistant GN infections with limited treatment options is small but critical, indicating a role for non-revenue-based strategies to develop more effective antibiotics, as well as mechanisms to support trials that address real-world unmet needs.
Disclosures
All authors: No reported disclosures.
</jats:sec
Needs assessment for novel Gram-negative antibiotics in US hospitals: a retrospective cohort study
- …
