10 research outputs found

    Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks

    Get PDF
    Additional file 1: Figures S1–S12. 13C-1H HSQC (heteronuclear single quantum coherence) spectra of untreated (raw) and hydrothermally pretreated (log R 0 = 3.65, 3.83 and 3.97) corn stover, Miscanthus × giganteus stalks and wheat straw. Figure S13. Phenylcoumaran structure. Figures S14–S16. Selected ATR-FTIR spectra each representing sample from untreated (raw) and hydrothermally pretreated (log R 0 = 3.65, 3.83 and 3.97) corn stover, Miscanthus × giganteus stalks and wheat straw. Figures S17–S30. Scatter plot of surface and bulk chemical composition with glucose release and wettability test of hydrothermally pretreated (log R 0 = 3.65, 3.83 and 3.97) corn stover, Miscanthus × giganteus stalks and wheat straw

    Xylo-oligosaccharides, fermentable sugars, and bioenergy production from sugarcane straw using steam explosion pretreatment at pilot-scale

    Get PDF
    This study investigated the production of xylo-oligosaccharides (XOS) from sugarcane straw (SCS) using steam explosion (SE) pretreatment at pilot-scale, as well as co-production of fermentable sugars and lignin-rich residues for bioethanol and bioenergy, respectively. SE conditions 200 °C; 15 bar; 10 min led to 1) soluble XOS yields of up to 35 % (w/w) of initial xylan with ∼50 % of the recovered XOS corresponding to xylobiose and xylotriose, considered the most valuable sugars for prebiotic applications; 2) fermentable glucose yields from the enzymatic hydrolysis of SE-pretreated SCS of up to ∼78 %; 3) increase in the energy content of saccharified SCS residues (16 %) compared to the untreated material. From an integrated biorefinery perspective, it demonstrated the potential use of SCS for the production of value-added XOS ingredients as well as liquid and solid biofuel products.</p

    Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes

    Get PDF
    Abstract Background Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions. Results Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover (Zea mays subsp. mays L.), Miscanthus × giganteus stalks (MS) and wheat straw (Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R 0) of 3.65, 3.83 and 3.97. The LRRs had different residual carbohydrate levels—the highest in MS; the lowest in WS. The residual carbohydrate was not traceable at the surface of the LRRs particles by ATR-FTIR analysis. The chemical properties of the lignin in the LRRs varied across the three types of biomass, but monolignols composition was not affected by the severity factor. When pure cellulose was added to a mixture of LRRs and a commercial cellulolytic enzyme preparation, the rate and extent of glucose release were unaffected by the presence of LRRs regardless of biomass type and severity factor, despite adsorption of the enzymes to the LRRs. Since the surface of the LRRs particles were covered by lignin, the data suggest that the retardation of enzymatic cellulose degradation during extended reaction on lignocellulosic substrates is due to physical blockage of the access of enzymes to the cellulose caused by the gradual accumulation of lignin at the surface of the biomass particles rather than by nonproductive enzyme adsorption. Conclusions The study suggests that lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier blocking the access of enzymes to cellulose rather than by inducing retardation through nonproductive adsorption of enzymes

    Hydrothermal Liquefaction of Enzymatic Hydrolysis Lignin: Biomass Pretreatment Severity Affects Lignin Valorization

    No full text
    Alkaline hydrothermal liquefaction (HTL) of lignin-rich enzymatic hydrolysis residues (EnzHR) from wheat straw and Miscanthus x giganteus was performed at 255, 300, and 345 \ub0C to investigate valorization of this side-stream from second-generation bioethanol production. The EnzHR were from biomass hydrothermally pretreated at two different levels of severity (190 \ub0C, 10 min or 195 \ub0C, 15 min), and HTL at 300 \ub0C of these EnzHR showed the most effective lignin depolymerization of the low severity EnzHR for both wheat straw and Miscanthus. The degree of depolymerization during HTL was temperature dependent and was not complete after 20 min at 255 \ub0C, most distinctly for the Miscanthus EnzHR. The yields of 128 monomeric products quantified by gas chromatography-mass spectrometry were up to 15.4 wt % of dry matter. Principal component analysis of the quantified compounds showed that nonlignin HTL products are main contributors to the variance of the HTL products from the two biomasses. The chemically modified lignin polymer was found to have increased thermal stability after HTL. Analytical pyrolysis was applied to investigate the chemical composition of a larger fraction of the products. Analytical pyrolysis contributed with additional chemical information as well as confirming trends seen from quantified monomers. This work is relevant for future lignin valorization in biorefineries based on current second-generation bioethanol production

    Hydrothermal Liquefaction of Enzymatic Hydrolysis Lignin: Biomass Pretreatment Severity Affects Lignin Valorization

    Get PDF
    Alkaline hydrothermal liquefaction (HTL) of lignin-rich enzymatic hydrolysis residues (EnzHR) from wheat straw and Miscanthus x giganteus was performed at 255, 300, and 345 °C to investigate valorization of this side-stream from second-generation bioethanol production. The EnzHR were from biomass hydrothermally pretreated at two different levels of severity (190 °C, 10 min or 195 °C, 15 min), and HTL at 300 °C of these EnzHR showed the most effective lignin depolymerization of the low severity EnzHR for both wheat straw and Miscanthus. The degree of depolymerization during HTL was temperature dependent and was not complete after 20 min at 255 °C, most distinctly for the Miscanthus EnzHR. The yields of 128 monomeric products quantified by gas chromatography–mass spectrometry were up to 15.4 wt % of dry matter. Principal component analysis of the quantified compounds showed that nonlignin HTL products are main contributors to the variance of the HTL products from the two biomasses. The chemically modified lignin polymer was found to have increased thermal stability after HTL. Analytical pyrolysis was applied to investigate the chemical composition of a larger fraction of the products. Analytical pyrolysis contributed with additional chemical information as well as confirming trends seen from quantified monomers. This work is relevant for future lignin valorization in biorefineries based on current second-generation bioethanol production
    corecore