50 research outputs found

    The cognitive-discursive model of evidentiality (authorization)

    Get PDF
    The paper discusses some functional aspects of evidentiality in scientific discourse and dialect speech in Russian. The aim is to show how evidentiality, traditionally called authorization in Russian, can be studied from functional and cognitive-discursive points of view. The authors propose a methodology of revealing additive meanings of evidential (authorizational) structures based on interpretation of subjective components of speech. The interpretation is based on the authorization model proposed by the authors

    Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    Get PDF
    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA Lys UUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm 5 s 2 U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm 5 s 2 U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism

    Structural Insights into the Role of Diphthamide on Elongation Factor 2 in mRNA Reading-Frame Maintenance

    Get PDF
    Β© 2018 Elsevier Ltd One of the most critical steps of protein biosynthesis is the coupled movement of mRNA, which encodes genetic information, with tRNAs on the ribosome. In eukaryotes, this process is catalyzed by a conserved G-protein, the elongation factor 2 (eEF2), which carries a unique post-translational modification, called diphthamide, found in all eukaryotic species. Here we present near-atomic resolution cryo-electron microscopy structures of yeast 80S ribosome complexes containing mRNA, tRNA and eEF2 trapped in different GTP-hydrolysis states which provide further structural insights into the role of diphthamide in the mechanism of translation fidelity in eukaryotes

    The cognitive-discursive model of evidentiality (authorization)

    No full text
    The paper discusses some functional aspects of evidentiality in scientific discourse and dialect speech in Russian. The aim is to show how evidentiality, traditionally called authorization in Russian, can be studied from functional and cognitive-discursive points of view. The authors propose a methodology of revealing additive meanings of evidential (authorizational) structures based on interpretation of subjective components of speech. The interpretation is based on the authorization model proposed by the authors

    Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    No full text
    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA Lys UUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm 5 s 2 U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm 5 s 2 U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism

    Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    No full text
    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA Lys UUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm 5 s 2 U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm 5 s 2 U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism

    Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    Get PDF
    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA Lys UUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm 5 s 2 U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm 5 s 2 U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism

    Structural Insights into the Role of Diphthamide on Elongation Factor 2 in mRNA Reading-Frame Maintenance

    No full text
    Β© 2018 Elsevier Ltd One of the most critical steps of protein biosynthesis is the coupled movement of mRNA, which encodes genetic information, with tRNAs on the ribosome. In eukaryotes, this process is catalyzed by a conserved G-protein, the elongation factor 2 (eEF2), which carries a unique post-translational modification, called diphthamide, found in all eukaryotic species. Here we present near-atomic resolution cryo-electron microscopy structures of yeast 80S ribosome complexes containing mRNA, tRNA and eEF2 trapped in different GTP-hydrolysis states which provide further structural insights into the role of diphthamide in the mechanism of translation fidelity in eukaryotes
    corecore