6,853 research outputs found

    Context-based person identification for news collection

    Get PDF

    Construction of the dirichlet to neumann boundary operator for triangles and applications in the analysis of polygonal conductors

    Get PDF
    This paper introduces a fast and accurate method to investigate the broadband inductive and resistive behavior of conductors with a nonrectangular cross section. The presented iterative combined waveguide mode (ICWM) algorithm leads to an expansion of the longitudinal electric field inside a triangle using a combination of parallel-plate waveguide modes in three directions, each perpendicular to one of the triangle sides. This expansion is used to calculate the triangle's Dirichlet to Neumann boundary operator. Subsequently, any polygonal conductor can be modeled as a combination of triangles. The method is especially useful to investigate current crowding effects near sharp conductor corners. In a number of numerical examples, the accuracy of the ICWM algorithm is investigated, and the method is applied to some polygonal conductor configurations

    Eigenmode-based capacitance calculations with applications in passivation layer design

    Get PDF
    The design of high-speed metallic interconnects such as microstrips requires the correct characterization of both the conductors and the surrounding dielectric environment, in order to accurately predict their propagation characteristics. A fast boundary integral equation approach is obtained by modeling all materials as equivalent surface charge densities in free space. The capacitive behavior of a finite dielectric environment can then be determined by means of a transformation matrix, relating these charge densities to the boundary value of the electric potential. In this paper, a new calculation method is presented for the important case that the dielectric environment is composed of homogeneous rectangles. The method, based on a surface charge expansion in terms of the Robin eigenfunctions of the considered rectangles, is not only more efficient than traditional methods, but is also more accurate, as shown in some numerical experiments. As an application, the design and behavior of a microstrip passivation layer is treated in some detail

    Named entity recognition on flemish audio-visual and news-paper archives

    Get PDF

    Lifted rule injection for relation embeddings

    Get PDF
    Methods based on representation learning currently hold the state-of-the-art in many natural language processing and knowledge base inference tasks. Yet, a major challenge is how to efficiently incorporate commonsense knowledge into such models. A recent approach regularizes relation and entity representations by propositionalization of first-order logic rules. However, propositionalization does not scale beyond domains with only few entities and rules. In this paper we present a highly efficient method for incorporating implication rules into distributed representations for automated knowledge base construction. We map entity-tuple embeddings into an approximately Boolean space and encourage a partial ordering over relation embeddings based on implication rules mined from WordNet. Surprisingly, we find that the strong restriction of the entity-tuple embedding space does not hurt the expressiveness of the model and even acts as a regularizer that improves generalization. By incorporating few commonsense rules, we achieve an increase of 2 percentage points mean average precision over a matrix factorization baseline, while observing a negligible increase in runtime

    Character-level Recurrent Neural Networks in Practice: Comparing Training and Sampling Schemes

    Get PDF
    Recurrent neural networks are nowadays successfully used in an abundance of applications, going from text, speech and image processing to recommender systems. Backpropagation through time is the algorithm that is commonly used to train these networks on specific tasks. Many deep learning frameworks have their own implementation of training and sampling procedures for recurrent neural networks, while there are in fact multiple other possibilities to choose from and other parameters to tune. In existing literature this is very often overlooked or ignored. In this paper we therefore give an overview of possible training and sampling schemes for character-level recurrent neural networks to solve the task of predicting the next token in a given sequence. We test these different schemes on a variety of datasets, neural network architectures and parameter settings, and formulate a number of take-home recommendations. The choice of training and sampling scheme turns out to be subject to a number of trade-offs, such as training stability, sampling time, model performance and implementation effort, but is largely independent of the data. Perhaps the most surprising result is that transferring hidden states for correctly initializing the model on subsequences often leads to unstable training behavior depending on the dataset.Comment: 23 pages, 11 figures, 4 table

    Analysis of resource sharing in transparent networks

    Get PDF
    Transparent optical networking promises a cost-efficient solution for future core and metro networks because of the efficacy of switching high-granularity trunk traffic without opto-electronic conversion. Network availability is an important performance parameter for network operators, who are incorporating protection and restoration mechanisms in the network to achieve competitive advantages. This paper focuses on the reduction in Capital Expenditures (CapEx) expected from implementing sharing of backup resources in path-protected transparent networks. We dimension a nationwide network topology for different protection mechanisms using transparent and opaque architectures. We investigate the CapEx reductions obtained through protection sharing on a population of 1000 randomly generated biconnected planar topologies with 14 nodes. We show that the gain for transparent networks is heavily dependent on the offered load, with almost no relative gain for low load (no required parallel line systems). We also show that for opaque networks the CapEx reduction through protection sharing is independent of the traffic load and shows only a small dependency on the number of links in the network. The node CapEx reduction for high load (relative to the number of channels in a line system) is comparable to the CapEx reduction in opaque OTN systems. This is rather surprising as in OTN systems the number of transceivers and linecards and the size of the OTN switching matrix all decrease, while in transparent networks only the degree of the ROADM (number and size of WSSs in the node) decreases while the number of transponders remains the same

    An attentive neural architecture for joint segmentation and parsing and its application to real estate ads

    Get PDF
    In processing human produced text using natural language processing (NLP) techniques, two fundamental subtasks that arise are (i) segmentation of the plain text into meaningful subunits (e.g., entities), and (ii) dependency parsing, to establish relations between subunits. In this paper, we develop a relatively simple and effective neural joint model that performs both segmentation and dependency parsing together, instead of one after the other as in most state-of-the-art works. We will focus in particular on the real estate ad setting, aiming to convert an ad to a structured description, which we name property tree, comprising the tasks of (1) identifying important entities of a property (e.g., rooms) from classifieds and (2) structuring them into a tree format. In this work, we propose a new joint model that is able to tackle the two tasks simultaneously and construct the property tree by (i) avoiding the error propagation that would arise from the subtasks one after the other in a pipelined fashion, and (ii) exploiting the interactions between the subtasks. For this purpose, we perform an extensive comparative study of the pipeline methods and the new proposed joint model, reporting an improvement of over three percentage points in the overall edge F1 score of the property tree. Also, we propose attention methods, to encourage our model to focus on salient tokens during the construction of the property tree. Thus we experimentally demonstrate the usefulness of attentive neural architectures for the proposed joint model, showcasing a further improvement of two percentage points in edge F1 score for our application.Comment: Preprint - Accepted for publication in Expert Systems with Application
    corecore