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Eigenmode-based Capacitance Calculations with

Applications in Passivation Layer Design
Thomas Demeester and Daniël De Zutter, Fellow, IEEE

Abstract—The design of high-speed metallic interconnects such
as microstrips requires the correct characterization of both the
conductors and the surrounding dielectric environment, in order
to accurately predict their propagation characteristics. A fast
boundary integral equation approach is obtained by modeling
all materials as equivalent surface charge densities in free space.
The capacitive behavior of a finite dielectric environment can then
be determined by means of a transformation matrix, relating
these charge densities to the boundary value of the electric
potential. In this paper a new calculation method is presented for
the important case that the dielectric environment is composed
of homogeneous rectangles. The method, based on a surface
charge expansion in terms of the Robin eigenfunctions of the
considered rectangles, is not only more efficient than traditional
methods, but also more accurate, as shown in some numerical
experiments. As an application, the design and behavior of a
microstrip passivation layer is treated in some detail.

Index Terms—Interconnects, capacitance, Robin eigenfunc-
tions, passivation layer, microstrip design.

I. INTRODUCTION

H IGH speed interconnects both on-board and on-chip that

display substantial wave effects, are often long enough

to be modeled as two-dimensional transmission line structures,

such as microstrips or striplines, both on the printed circuit

board (PCB) level, as on-chip. For such models, the so-called

‘RLGC’ circuit matrices, i.e., R, L, G, C, respectively, the

resistance, inductance, conductance, and capacitance matrices,

in combination with the telegrapher’s equations describe the

behavior of the fundamental propagation modes along the

lines. It is shown in [1] that for typical high-speed interconnect

applications, the so-called quasi transverse magnetic (quasi-

TM) conditions remain valid even for the highest operating

frequencies. This is the case, as long as the corresponding

longitudinal wavelength remains enough longer than the trans-

verse dimension over which the fields are relevant. If this

were not the case, the structure would no longer be apt for an

efficient data transmission. Full-wave solutions to Maxwell’s

equations as a basis for the RLGC matrix extraction have been

proposed as well [2]. These however lead to different models

(which all coincide in the quasi-TM frequency range), and they

loose a major advantage of quasi-TM models: the quasi-TM

conditions lead to a decoupling of the total electromagnetic

field problem into (i) a quasi-static complex capacitance

problem (to determine the complex capacitance C + G/jω,

with ω the angular frequency) and (ii) a quasi-TM complex

inductance problem (to calculate L+ R/jω).
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The numerical solution of a capacitance problem has been

under investigation for a long time now and many different so-

lution methods have been developed. Some of these, as well as

a further overview of the existing literature, are found in [3]–

[11]. Even today, the quasi-static approach to determine the

capacitive behavior of many practical interconnects remains

valid.

The current paper proposes a new numerical solution

method that is similar to the recent technique described in [1],

in the sense that it allows for an efficient boundary integral

equation based solution. The considered configurations are not

restricted to infinitely wide layered media but require that the

cross-section can be divided into an ensemble of homogeneous

rectangles, which is often the case. As remarked by one

of the reviewers, a solution technique using a standard sur-

face integral equation for the conductor-dielectric electrostatic

problem, see e.g. [12] section 3.12.1, is a valid alternative for

the technique presented in this paper and can be applied to

arbitrary shapes. An example of the use of this technique can

be found in [13]. In our technique the use of the more singular

derivative of the Green’s function is avoided.

In section II, some elements of the method of [1] are briefly

summarized, and from these the new method is developed,

with a mathematical description in Section III. In the nu-

merical examples of Section IV, firstly some properties of

the new field expansion functions are illustrated, secondly a

comparison between the method of [1] and the new technique

is made, and finally, a passivation layer design example is

discussed, as the new method appears to be well-suited for

thin layers.

II. CAPACITANCE CALCULATIONS

For conductors in a lossy dielectric environment that exists

of finite homogeneous subregions, a fast solution for the

capacitance problem, based on a boundary integral equation,

was presented in [1]. Some aspects of this method are briefly

recapitulated here, as they are needed in the sequel. First, all

materials are replaced by equivalent surface charge densities ρ
in free space, such that the quasi-static 2-D Green’s function

G0 of free space can be used to relate the electric potential φ
to these charges, according to

φ(r) = −

∫

∀ci

G0(r|r
′) ρ(r′) dc(r′) (1)

in which the integral runs over the boundary ci of each

homogeneous subregion i and with

G0(r|r
′) =

1

4πε0
ln (|r − r

′|). (2)
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Now, ρ and φ are discretized as

ρ(r) ≈
∑

m

Rm bm(r) and φ(r) ≈
∑

m

Φm bm(r) (3)

for r on the considered boundary, and {bm} a set of appro-

priate basis functions. A Galerkin weighing of (1), evaluated

on the material boundaries, yields a first set of relationships

between the unknowns Rm and Φm, in the form
[

Vc

Φd

]

= −

[

Gcc Gcd

Gdc Gdd

]

·

[

Rc

Rd

]

, (4)

in which the expansion coefficients for the charge, respectively,

electric potential are taken together for the conductors in Rc

and Vc, and for the dielectrics in Rd and Φd. Furthermore,

the constant voltage Vc on the conductors’ boundaries is used

as excitation, and the equivalent charges on the boundary of

dielectric subregion i can be related to the boundary value of

its potential, through

ρ(r) = (εi − ε0)
∂φ(r)

∂n
, r ∈ ci (5)

= (εi − ε0)

∮

ci

D(r, r′)φ(r′) dc(r′), (6)

with D the Dirichlet-to-Neumann operator (DtN), mapping φci
onto its normal derivative along ci, and with εi the permittivity

of material i. In its discretized form, and written for all

dielectrics together, (6) becomes

Rd = DΦd (7)

which allows, upon substitution into (4), to determine all

unknown coefficients. The total charge on each conductor,

leads to the entries of the capacitance (and conductance)

matrix if each conductor is set in turn to 1V while the others

are kept on 0V .

The method as explained above works very well, but has

one major drawback due to the discretization of the DtN

operator into the DtN matrix D. The calculation of D in

the quasi-static frequency range is based on an expansion of

φ over the dielectric subregions (discretized in rectangles or

triangles) in terms of sine basis functions on each side, while

enforcing the exact solution for φ which, in the quasi-TM

limit, satisfies Laplace’s equation ∇2φ(x, y) = 0. Its normal

derivative is then determined as the superposition of the normal

derivatives of each basis function. This is described in [14] and

[15], for rectangular, respectively, triangular geometries, but

in this paper we focus on the important case of rectangular

dielectric subregions. A Galerkin weighing procedure yields

an expansion of φ with a minimal quadratic error along the

boundary. The small components in φ, which vary rapidly

along the boundary, get a more important weight in ∂φ/∂n.

On the one hand, enough higher harmonics are required for the

representation of ‘any’ boundary value of φ, but on the other

hand, a small error on these components leads to a strongly

increased error in the normal derivative, as demonstrated

further on. It especially deteriorates the accuracy of ρ near

the corners, because of an often imperfect estimation of φ at

the corner points, used to eliminate the Gibb’s effect [14].

In Section III, this problem is solved by means of an

expansion with a minimal quadratic error for ρ instead of φ
over the considered dielectric regions. This has as a direct

consequence that the capacitance calculations, by integrating

ρ, are much more accurate. Indirectly, the error on φ, in

turn no longer minimal in a quadratic sense, remains small

as we integrate ρ to obtain φ, and because φ is generally

much smoother than ρ. Of course, the boundary value of φ
on a dielectric block cannot be determined unambiguously

from ∂φ/∂n. Therefore, we will first extract a constant φ0
from φ, by averaging over the boundary. For the remaining

component (φ−φ0), its relation to ∂φ/∂n is bijective, and we

will construct an operator B which maps ∂φ/∂n on boundary

ci onto (φ− φ0), such that with (5),

φ(r) = φ0 +

∮

ci

B(r, r′)

εi − ε0
ρ(r′) dc(r′), r ∈ ci. (8)

The discretized form of (8), taken together for all dielectrics,

becomes

Φd = Φ0 + BRd (9)

in which Φ0 is a column vector, for each dielectric i containing

a different unknown constant potential φ0,i. Substitution of (9)

into (4) leads to a system of equations to be solved with respect

to the unknown Rc, Rd and the mean dielectric boundary

potentials φ0,i. This system has to be completed with as many

extra equations as there are unknowns φ0,i, expressing the

requirement that the total equivalent charge on each dielectric

has to remain zero.

III. ROBIN EIGENFUNCTION EXPANSION

OF THE CHARGE DENSITIES

In this section, we will explain how the relation

φ(r)− φ0 =

∮

c

B(r, r′)
∂φ(r′)

∂n
dc(r′), r ∈ c (10)

is discretized along the boundary c of a rectangular area

S ↔ {−x0 ≤ x ≤ x0, −y0 ≤ y ≤ y0}, for a quantity

φ satisfying Laplace’s equation inside S. We will need the

following expansion

∂φ(r)

∂n
=

N
∑

n=1

χn ψn(r), r ∈ c (11)

with N high enough (see Section IV), and in which the basis

functions ψn satisfy

∇2 ψn(r) = 0, r ∈ S (12)

∂ψn(r)

∂n
= λn ψn(r), r ∈ c (13)

∮

c

ψn(r)ψm(r) dc = δnm (14)

with δnm = 1 if n = m, and else δnm = 0. Because of the so-

called Robin boundary condition (13), the orthonormal set of

eigenfunctions we wish to construct, are Robin eigenfunctions

of S. Separation of the variables (SoV) in this case (omitting

the index n), and already taking into account (13) on the sides
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x = 0 and y = 0, yields the following four independent sets

of solutions

ψ(x, y) = C

{

cos γx

sin γx

}

·

{

cosh γy

sinh γy

}

(15)

with a normalization coefficient C yet to be determined. The

four equations are obtained by combining each of the two

terms between the first brackets with each of the terms between

the second brackets. The remaining conditions,

0 =

[

∂ψ

∂x
− λψ

]

x=x0

and 0 =

[

∂ψ

∂y
− λψ

]

y=y0

(16)

lead with (15), and by elimination of λ, to
{

− tan γx0

cot γx0

}

=

{

tanh γy0

coth γy0

}

(17)

displaying four different equations, corresponding to the dif-

ferent combinations for ψ in (15). Four sets of solutions for

γ can now be calculated, which are all real and positive

(as the corresponding negative solutions lead to the same

eigenfunctions and are thus omitted), with the corresponding

eigenfunction given by (15) and the eigenvalues by

λ = γ

{

− tan γx0

cot γx0

}

. (18)

We see that, if we replace γ in (17) by jγ, the same eigenvalue

equations are found, provided x0 and y0 are exchanged. The

same observation holds for (15). As a result, the algorithm to

solve (17) can be used again, with x0 and y0 exchanged. The

real solutions one finds now, are in fact the remaining strictly

imaginary solutions of (17). The numerical procedure to solve

(17) is straightforward. For the examples treated in this paper,

the secant method is used, which converges rapidly and to an

arbitrary precision, due to the regularity in the zeros, and the

asymptotic behavior for large values of γ.

Combining (12) and (13) with Gauss’ law, shows that two

eigenfunctionsψi and ψj are always orthogonal with respect to

integration over c if they have different eigenvalues λi 6= λj . In

some cases, different functions are found with the same eigen-

values, e.g., for x0 = y0, but in these cases those functions

are orthogonal as well. A more rigorous mathematical analysis

would be outside the scope of this paper, however. Finally,

for each eigenfunction ψi, the normalization coefficient Ci

can be determined by equating ψ2
i , after integration over

c, to one. As an illustration, the boundary value of a few

Robin eigenfunctions is shown in Fig. 1, for a rectangle with

dimensions 2× 1, with consecutive sides, respectively, c1, c2,

c3, and c4. The eigenvalues are given as well. For the higher

values of γn, (18) shows that λ ≈ γ, and from (17) it then

follows that γx0 ≈ (2k + 1)π/4, k ∈ Ú (as is the case for

ψ22), or, for the second set of eigenvalues, γy0 ≈ (2k+1)π/4
(as for ψ20 and ψ21). Beyond the first 20 eigenvalues, these

approximations form a very good starting guess in the root

finding procedure, allowing to reach a sufficient accuracy

within very few iterations. Notice the presence of the constant

eigenfunction ψ0, corresponding to the zero eigenvalue. ψ0 is

ψ0 (λ = 0) ψ1 (λ = 0.1768π) ψ2 (λ = 0.4861π)

ψ10 (λ = 1.7371π) ψ11 (λ = 1.7631π) ψ12 (λ = 2.2465π)

ψ20 (λ = 3.5000π) ψ21 (λ = 3.5000π) ψ22 (λ = 3.7500π)
1

1

1

0

0

0

−1

−1

−1

c1c1c1 c2c2c2 c3c3c3 c4c4c4

Fig. 1: Boundary value of some Robin eigenfunctions, for a

rectangle with dimensions 2× 1.

not present in (11), as the mean of ∂φ/∂n has to be zero, but

in a general expansion it is of course required.

Consider again the expansion (11), in which ∂φ/∂n is

discretized as

∂φ(r)

∂n
=

∑

m

Em bm(r), r ∈ c (19)

For the basis functions bm along c, pulses are used in the

examples in Section IV, but other choices are equally possible.

The Galerkin weighing procedure leads from (11) and (19) to

the discretized form

X = P
T
E (20)

in wich X and E contain the coefficients χn (see (11)),

respectively, Em, and

[

P

]

mn
=

∮

c

bm(r)ψn(r) dc. (21)

If we expand φ on S in terms of the new eigenfunctions,

φ(r) =

N
∑

n=0

αnψn(r), r ∈ S (22)

we find that

α0 ψ0 =
1

C

∮

c

φ(r) dc(r)
def
= φ0 (23)

with C the perimeter of S. Comparing the normal derivative

of (22) to (11), shows with (23) that

φ(r)− φ0 =

N
∑

n=1

χn

λn
ψn(r), r ∈ c (24)
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and if we define ∆Φm
def
= Φm − φ0, and weigh (24) and

(3) with each of the basis functions bm, we find the direct

discretization of (10),

∆Φ = BE, with B = T
−1

PΛ
−1

P
T (25)

in which the column vector ∆Φ contains the coefficients

∆Φm, the diagonal matrix Λ contains the eigenvalues

λn, (n = 1, . . . , N) on its diagonal, and

[

T

]

mm̃
=

∮

c

bm(r) bm̃(r) dc(r). (26)

For the calculation of the DtN matrix D as in [14], analogous

matrices as P and P
T are required, but instead of the diagonal

matrix Λ
−1 in (25) a much slower matrix multiplication with

a large non-sparse matrix is required, to transform the sine

expansion into the corresponding normal derivative. Here a

numerical root finding procedure is required to determine

the diagonal elements of Λ. Globally, the determination of B

remains more efficient, apart from the fact that the results are

by far more accurate (see Section IV-B).

It is worth mentioning that these Robin eigenfunctions

represent a very natural basis to calculate the matrix B from.

The reason is, that its eigenvectors are a discretized version

of the eigenfunctions ψn, with eigenvalues approximately

1/λn. This directly follows from the boundary condition (13)

in comparison with the eigenvalue equation for B. As an

illustration, the first and eleventh eigenvectors of B are plotted

in Fig. 1 with small cross ‘×’ symbols, and compared with

ψ1 and ψ11, respectively, where the rectangle was discretized

with 38 intervals along its boundary. In order to compensate

for the different normalization, they were rescaled with a scalar

factor of 1/
√

(
∑

k dkVk) (with dk the interval width, and Vk
the entries of the considered eigenvector with unit euclidean

norm), and the correspondence is indeed good.

IV. NUMERICAL EXAMPLES

A. Investigation of the Expansion Properties

As a first, theoretical, example, the numerical error on

∂φ/∂n is compared as obtained from the DtN matrix, with

respect to the new expansion in Robin eigenfunctions. Con-

sider again the rectangle S from Section II, this time dis-

cretized with 38 intervals along its boundary, as shown in

the inset of Figure 2. Take an arbitrary function φ(x, y) =
cosh (1− x/x0) sin (y/x0) (with x0 = 1 and y0 = 0.5) that

satisfies Laplace’s equation. In Fig. 2(a), the continuous value

of ∂φ/∂n is shown as a reference, as well as two pulse-

based approximations (displaying the coefficients in the middle

of the intervals). These were obtained as follows. From a

Galerking weighing of the exact boundary value of φ, the

vector Φ was obtained, and the coefficients displayed with

‘x’-symbols, are found as DΦ from the DtN matrix D. The

coefficients shown in dots are found from an expansion in

the Robin eigenfunctions, with the same number of basis

functions as used to calculate the DtN matrix. From E, the

‘best’ possible discretization (in a least squares sense) of

∂φ/∂n, we obtain the coefficients of the Robin functions as

P
T
E. Again projecting these on the basis of pulses yields

c1

c1

c2

c2

c3

c3

c4

c4

c1

c2

c3

c4

normal derivative ∂φ/∂n

abs. error on discret. of ∂φ/∂n

exact

via DtN matrix

via Robin expansion

−2

0

2

(a)

(b)

1

0.1

0.01

0.001

|ED|

|EB|

Fig. 2: (a) Boundary value φ (continuous and discretized) for a

rectangle with dimensions 2×1, (b) normal derivative ∂φ/∂n
(cont., discret., and approximations via the DtN matrix and via

the Robin expansion, both with the same amount of expansion

functions), and (b) absolute error on both approximations.

T
−1

PP
T
E, shown with dots in Fig. 2. The absolute value

of the difference between the ideal coefficients E and both

approximations is shown in Fig. 2(b). The overall accuracy

using the Robin eigenfunction expansion is, as expected, much

better than with the DtN matrix. The reason is primarily due to

the inaccurate treatment near the corners, and to the increased

weight of higher order contributions in the DtN approach.

In this example, 304 expansion functions were used (to both

calculate D and P), or 8 times the number of discretization

intervals. Let us in general find out how the error behaves

in terms of the number N of basis functions (for Dirichlet-

vs. Robin expansion), and in relation to the number M of

discretization intervals. In Fig. 3, the error is shown for varying

N (normalized by M ), for two different discretizations, i.e.,

M = 38 (as for Fig. 2) and M = 98. The shown error is a

relative root mean square (RMS) error, defined as

error =

√

√

√

√

∮

c

(

[∂φ/∂n]approx. − ∂φ/∂n
)2
dc

∮

c

(

∂φ/∂n
)2
dc

(27)

in which pulses are used to discretize the continuous quanti-

ties. We observe a minimum in the error for the DtN approach,

when about as many expansion functions are used as the num-

ber of discretization segments. If more expansion functions are

used, the error grows, due to the reinforcement of inaccuracies

in the calculation of the normal derivatives. In practice, the

boundary value of φ might vary much faster over the sides
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relat. error on approx. of ∂φ/∂n

10
−3

10
−2

10
−1

1

2
−3

2
−1

2
1

2
3

2
5

N/M

via Robin expansion
via DtN matrix

M = 38

M = 98

Fig. 3: Relative RMS error on both approximations of ∂φ/∂n
(via DtN matrix, and via Robin expansion), for the configura-

tion from Fig. 2. N is the number of expansion functions, M
the number of discretization intervals.

than in this theoretical example. In that case, a number of

sine functions equal to the number of intervals along that

side could be insufficient to expand the boundary value, and

the error would consequently increase. If too many expansion

functions are chosen, the error becomes much larger than the

monotonically decreasing error of the Robin expansion (see

the results in IV-B). The behavior for a finer discretization is

qualitatively the same, but with an overall lower error.

The numerical errors shown in Fig. 2 and Fig. 3 are an

incomplete way to compare the accuracy of both methods. The

error on ∂φ/∂n for the DtN expansion is necessarily larger

than for the Robin expansion, as the former one involves a

change of basis, subsequently the transformation from φ to

∂φ/∂n and then again a change of basis, whereas the latter

expansion is only a cascade of two basis transformations.

One could put forward the question how large the error on

φ would be in the Robin case, including the transformation

∂φ/∂n → φ, but then again, it is not possible to directly

compare this error to the ones shown in Fig. 3. Therefore, in

the next paragraphs a direct comparison between both methods

is performed on the capacitance level.

B. Comparison DtN vs. Robin Method

Consider the differential pair structure shown in Fig. 4,

used in this section without the dielectric coating (∆ = 0),

and with w = 6.56mils. The capacitance problem is solved

by both the DtN method and the new Robin method. To

investigate the influence of the discretization and the number

of expansion functions used inside the substrate, its width W
is varied from narrow (W = 2w + s = 18.11mils = 460µm,

only underneath the differential pair) up to very wide (W =
100mils = 2540µm). As a reference, the same structure

was simulated with the Capcad software developed by F.

Olyslager, which uses a boundary integral equation approach,

∆

∆
∆

tref

hsw

W

σ

σ
εcoat

tan δsub

εsub

tsig

Fig. 4: Coated differential pair (not shown on scale), with

tsig = 0.5 oz (1 oz = 34.8µm), tref = 1 oz, h = 5mils
(1mil = 25.4µm), s = 5mils, σ = 58MS/m (copper),

εsub = 4.3 ε0 and tan δsub = 0.02. Variable parameters are

w, ∆ and εcoat.

based on the Method of Moments with the Green’s function

of an infinitely wide multilayered medium [6]. That program

only deals with perfect conductors (including an infinitely

wide perfect conducting ground plane), but for the quasi-static

capacitance problem, the finite conductivity of the conductors

is irrelevant. Nonetheless, this only yields the asymptotic

solution for a very wide substrate.

In order to learn as much as possible about the numerical

behavior of both methods, simulations were done for three

different discretizations. In the configurations designated as

‘coarse’, ‘medium’ and ‘fine’, the number of segments along

the width of each conductor are 6, 12 and 24, respectively

(and 50 for the reference simulation with Capcad). For each

simulation, the discretization is recalculated automatically by

our software and hence, the segment width slightly increases

for wider substrates. In order to keep the comparison between

the different simulations transparant, the discretization per side

is chosen to be fairly uniform (whereas normally it would be

much denser near corners in order to increase the accuracy for

a lower number of unknowns).

For both methods, the parameter α is defined as the number

of expansion functions (Dirichlet or Robin) over the substrate,

divided by the number of discretization segments along its

boundary. The different values of this parameter that are used

in the simulations are α = 1, 2, 4, 8 and 16. Note that for

a finer discretization, a proportionally larger number of basis

functions is used for the same α. In Fig. 5, the self-capacitance

entries C11 are displayed. Using a dashed line, the reference

value for an infinitely wide substrate is indicated on each

figure.

The left column displays the results for the DtN method,

with a finer discretization from top to bottom. In each case,

the capacitance results increase for a higher α. This confirms

our assumption that one cannot add too many higher order

Dirichlet functions in the expansion of φ, as small errors on φ
lead to unacceptable errors on ∂φ/∂n. Clearly, the results are

better for a finer discretization, and the algorithm is normally

used for a fine discretization and α around 3.

For the Robin method, displayed on the right-hand side,

the behavior is different. On the one hand, a factor α = 1
leads to unreliable results, indicating that the same number

of expansion functions as the number of boundary segments

is not sufficient to calculate φ from ∂φ/∂n. As soon as

α > 1, the results are very consistent, and not only for
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Capacitance C11 (pF/m)

DtN Robin

co
ar
se

m
ed

iu
m

fi
n
e

80

80

80

100

100

100

4040 6060 8080

W (mils)W (mils)

1
2
4
8

α = 16

W →∞ α = 1

α = 2
4
8

16

1
2
4
8

α = 16

α = 1

α = 2
4
8

16

1
2
4
8

α = 16

α = 1

α = 2
4
8

16

Fig. 5: Capacitance C11 for the structure of Fig. 4 (with

∆ = 0, w = 6.56mils), with the DtN method (left), and the

Robin method (right), for 3 different discretizations (‘coarse’,

‘medium’ and ‘fine’), as a function of the substrate width W
and the parameter α, the ratio of the number of expansion

functions to discretization segments. The dashed line is the

reference value for an infinitely wide substrate.

Fig. 6: Simulated geometry, consisting of 13 rectangular

blocks (shown on scale, but displaying only half of the

simulated substrate width). The dimensions are as in Fig. 4,

with w = 6.56mils, and ∆ = 0.5 oz.

the fine discretization (although in the ‘coarse’ case, there is

a 1.3% underestimation of the result, due to the inaccurate

discretization).

Two major advantages of the Robin method have come

forward. On the one hand, the results converge to a fixed value,

as soon as sufficient Robin functions are used (which is not

the case for the DtN method). On the other hand, the factor

α is about the same as for the DtN method, but it allows for

a coarser discretization. This means that the absolute number

of Robin functions required is lower than the required number

of Dirichlet functions, and the total number of unknowns is

smaller than for a similar accuracy with the DtN method.

C. Modeling of a Passivation Layer

As an application example, we will study the effect of a thin

dielectric passivation layer on top of the microstrip structure

Re(Zdiff) as a function of f and ∆
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Fig. 7: Re(Zdiff) (Ω) for the structure of Fig. 4, with w =
6.56mils and εcoat = 3.3ε0, for variable coating thickness ∆,

and shown at several frequencies. The dash-dot line at 50GHz
is used as a reference for further simulations.

used in the previous example. Such a coating consists of an

inert dielectric material, and serves the purpose of protecting

the surface against humidity and corrosion [16]. This however

leads to an increased total amount of dielectric material near

the traces, and hence a lower characteristic impedance. This

effect is often compensated by reducing the trace width, which

in turn leads to an increased resistance and hence higher

propagation losses.

The new technique developed in this paper to deal with

dielectrics, is well-suited for the simulation of a thin passiva-

tion layer, due to its accuracy, as seen in Section IV-B. We

will explore in detail how the characteristic impedance of a

differential microstrip pair is affected by the thickness and

dielectric constant of the passivation layer, in combination with

the trace width. The purpose is to demonstrate our technique

by means of simulation results that are useful for the high-

speed digital designer.

The characteristic impedance of a symmetrical configuration

is in reality more often used in the design of transmis-

sion line structures than separate values of the capacitance,

conductance, inductance, and resistance, because it directly

determines the modal reflection coefficients at both ends of

the line, depending on the source and load impedance. For a

symmetrical structure with two signal lines and a reference

conductor, the differential impedance is defined as twice the

odd mode impedance, or hence [2],

Zdiff = 2

√

jω (Ls − Lm) + (Rs −Rm)

jω (Cs − Cm) + (Gs −Gm)
(28)

with the subscript s denoting the diagonal elements of the

2 × 2 circuit matrices, m the non-diagonal elements, and

C, G, L, and R, respectively, the capacitance, conductance,

inductance and resistance elements. Note that Cm and Gm

are always negative while Lm and Rm are positive. The

capacitance and conductance matrices are found with the

quasi-static technique described in Section II and III. The
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Fig. 8: Re(Zdiff) (Ω) for the structure of Fig. 4, with w =
6.56mils and at f = 50GHz, for a variable coating permit-

tivity εcoat and thickness ∆. The dash-dot line (εcoat = 3.3ε0)

corresponds to the 50GHz curve of Fig. 7.

resistance and inductance matrices are determined accurately

with the technique described in [1], up to high skin effect

frequencies.

Some useful information concerning differential pair inter-

connects from the viewpoint of the designer can be found

in [17] and a similar geometry is used here, as shown in

Fig. 4. The values of material and geometry parameters are

given in the caption, apart from the spacing s between the

traces, the coating thickness ∆ and the coating permittivity

εcoat, which are varied in the following simulations. Note

that the metal thickness is expressed in ounce (‘oz’), as is

common practice amongst designers (1 oz = 34.8µm). The

other dimensions are expressed in ‘mils’ (1mil = 25.4µm),

following [17]. Furthermore, the total width of the simulated

structure is W = 140mils, such that the end effect of the finite

substrate has a negligible influence on the differential behavior

of the line. The coating thickness ∆ is assumed constant along

the surface (as is indicated for the right conductor in Fig. 4).

The Robin eigenfunction technique described in Sections II

and III is applied by modeling the coating as a sequence

of 9 connected rectangular dielectric blocks. Fig. 6 shows

the 13 rectangular simulation blocks that have been used: 9

passivation blocks, 2 conductor blocks, a dielectric substrate

and a ground plane block.

The geometry that we will use as the baseline throughout

the different simulations, is the structure as shown in Fig. 4,

with w = 6.56mils, εcoat = 3.3ε0, and a varying coating

thickness ∆. As seen from Fig. 7, the dimensions are chosen

such, that its high-frequency differential impedance Zdiff be-

comes 100Ω in the case without coating (∆ = 0). The overall

behavior is as expected, with a lower impedance as the coating

thickness ∆ increases.

In a following simulation, in order to find out how Zdiff

depends on the coating permittivity εcoat, the frequency is

fixed at 50GHz, and εcoat is swept from 1.5ε0 tot 4.3ε0, with

the result shown in Fig. 8. The dash-dot line shows the result

for εcoat = 3.3ε0, which corresponds to the dash-dot curve at
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Fig. 9: Re(Zdiff) (Ω) for the structure of Fig. 4, with εcoat =
3.3ε0 and at f = 50GHz, for a variable trace width w and

thickness ∆. The dash-dot line corresponds to the dash-dot

lines in Fig. 7 and 8.

50GHz in Fig. 7. The results displayed in Fig. 8 can be easily

interpreted. For an increasing coating thickness, the impedance

decreases faster for a higher coating permittivity.

The question is, how the geometry should be modified to

compensate for the effect of the coating. In the following

experiment, we will reduce the trace width w, keeping the

spacing between the traces constant. The resulting Zdiff is

shown in Fig. 9 as a function of w and ∆. As a reference for

the reader, the dash-dot line again corresponds to the result

for the baseline geometry, already displayed in Fig. 7 and 8.

The bold line shows the required compensation of w as a

function of the coating thickness, in order to maintain a 100Ω
differential impedance.

V. CONCLUSION

This paper presents a new technique for fast capacitance

calculations, based on the Robin eigenmode expansion of the

electric potential in homogeneous rectangular dielectric sub-

regions. A careful comparison with the Dirichlet-to-Neumann

approach shows that the new technique performs better both

in terms of accuracy and efficiency. As a result, challenging

configurations with very thin dielectric layers can be dealt

with. This is demonstrated with the analysis of a differential

microstrip interconnect, coated with a dielectric passivation

layer.
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