3,067 research outputs found

    Tribological Studies on Scuffing Due to the Influence of Carbon Dioxide Used as a Refrigerant in Compressors

    Get PDF
    The refrigeration and air conditioning industry has expressed a great interest in the use of carbon dioxide (CO2) as a refrigerant. CO2 is anticipated to replace HFC refrigerants, which are known to have a negative effect on the environment. The reason behind the interest in CO2 is the fact that it is a natural refrigerant, thus environmentally acceptable. Of course, such a replacement raises concerns regarding design criteria and performance due to the different thermodynamic properties of CO2 and the very different range of pressures required for the CO2 refrigeration cycle. So far, work related to CO2 has been done from a thermodynamics point of view and researchers have made significant progress developing automotive and portable air-conditioning systems that use the environmentally friendly carbon dioxide as a refrigerant. The purpose of this work is to develop an understanding of how CO2 plays a role from a tribology standpoint. More specifically, the goal of this work is to gain an understanding on how CO2 influences friction, lubrication, wear and scuffing of tribological pairs used in compressors. Work in the area of tribology related to CO2 is very limited. Preliminary work by Cusano and coworkers showed that consistent data for tests using CO2 could not be acquired nor could a satisfactory explanation be offered for the inconsistency. Their results triggered the initiation of the work presented here. In this first attempt to understand the tribological behavior of CO2 several problems were encountered. During this work we noted that its behavior, unlike conventional refrigerants, could not always be predicted. We believe that this can be attributed to the thermodynamic properties of CO2, which cannot be ignored when studying its tribological behavior. Thermodynamic Properties such as miscibility are very important when tribological testing is performed. A limiting factor with our tester was that it was not designed for CO2 testing, but for other conventional refrigerants and therefore made previously developed testing protocols non-applicable with CO2. Through a different approach and some modifications to our tester we were able to establish a protocol for testing under the presence of CO2. CO2 was then compared to R134a and the experimental results showed that it performs equally well.Air Conditioning and Refrigeration Project 13

    Good Study Facilities

    Get PDF

    Intermodal parametric frequency conversion in optical fibers

    Full text link
    Lasers are an essential technology enabling countless fields of optics, however, their operation wavelengths are limited to isolated regions across the optical spectrum due to the need for suitable gain media. Parametric frequency conversion (PFC) is an attractive means to convert existing lasers to new colors using nonlinear optical interactions rather than the material properties of the host medium, allowing for the development of high power laser sources across the entire optical spectrum. PFC in bulk χ(2) crystals has led to the development of the optical parametric oscillator, which is currently the standard source for high power light at non-traditional wavelengths in the laboratory setting. Ideally, however, one could implement PFC in an optical fiber, thus leveraging the crucial benefits of a guided-wave geometry: alignment-free, compact, and robust operation. Four-wave mixing (FWM) is a nonlinear effect in optical fibers that can be used to convert frequencies, the major challenge being conservation of momentum, or phase matching, between the interacting light waves. Phase matching can be satisfied through the interaction of different spatial modes in a multi-mode fiber, however, previous demonstrations have been limited by mode stability and narrow-band FWM gain. Alternatively, phase matching within the fundamental mode can be realized in high-confinement waveguides (such as photonic crystal fibers), but achieving the anomalous waveguide dispersion necessary for phase matching at pump wavelengths near ∼1 μm (where the highest power fiber lasers emit) comes at the cost of reducing the effective area of the mode, thus limiting power-handling. Here, we specifically consider the class of Bessel-like LP0,m modes in step-index fibers. It has been shown that these modes can be selectively excited and guided stably for long lengths of fiber, and mode stability increases with mode order ‘m’. The effective area of modes in these fibers can be very large (>6000 μm2 demonstrated) and is decoupled from dispersion, allowing for phase matching within a single mode in a power-scalable platform. Furthermore, step-index fibers can guide many different LP0,m modes, allowing access to a highly multi-moded basis set with which to study FWM interactions between different modes. In this thesis we develop techniques to excite, propagate, and characterize LP0,m modes in order to demonstrate FWM in two regimes: monomode interactions comprising waves all belonging to the same mode, and intermodal interactions between different modes. In the monomode regime we demonstrate parametric sources which operate at near-infrared wavelengths under-served by conventional fiber lasers, including 880, 974, 1173, and 1347 nm. The output pulses for these systems are ∼300 ps in duration and reach peak powers of ∼10 kW, representing, to the best our knowledge, the highest peak power fiber laser sources demonstrated at these wavelengths to date. In the intermodal regime, we demonstrate a cascade of FWM processes between different modes that lead to a series of discrete peaks in the visible portion of the spectrum, increasing monotonically in mode order from LP0,7 at 678 nm to LP0,16 at 443 nm. This cascade underscores the huge number of potential FWM interactions between different LP0,m modes available in a highly multi-mode fiber, which scale as N4 for N guided modes. Finally, we demonstrate a novel intermodal FWM process pumped between the LP0,4 and LP0,5 modes of a step-index fiber, which provides broadband FWM gain (63 nm at 1550 nm) while maintaining wavelength separations of nearly an octave (762 nm) – a result that cannot be replicated in the single-mode regime. We seed this process to generate a ∼10 kW, ∼300-ps pulsed fiber laser wavelength-tunable from 786-795 nm; representing a fiber analogue of the ubiquitous Ti:Sapphire laser

    Curating Collective Collections-Learning from Collection Management Kerfuffles

    Get PDF

    Reflections After Dark

    Get PDF

    Curating Collective Collections -- Prospectus for a New ATG Column

    Get PDF
    • …
    corecore