47 research outputs found

    Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease

    Get PDF
    Previous studies showed that YAP1 is over-expressed in hepatocellular carcinoma (HCC). Here we observed higher expression of Yap1/Ctgf axis in dysplastic nodules and HCC chemically-induced in F344 rats, genetically susceptible to hepatocarcinogenesis, than in lesions induced in resistant BN rats. In BN rats, highest increase in Yap1-tyr357, p73 phosphorylation and Caspase 3 cleavage occurred. In human HCCs with poorer prognosis ( 3 years survival; HCCB). In the latter, higher levels of phosphorylated YAP1-ser127, YAP1-tyr357 and p73, YAP1 ubiquitination, and Caspase 3 cleavage occurred. Expression of stemness markers NANOG, OCT-3/4, and CD133 were highest in HCCP and correlated with YAP1 and YAP1-TEAD levels. In HepG2, Huh7, and Hep3B cells, forced YAP1 over-expression led to stem cell markers expression and increased cell viability, whereas inhibition of YAP1 expression by specific siRNA, or transfection of mutant YAP1 which does not bind to TEAD, induced opposite alterations. These changes were associated, in Huh7 cells transfected with YAP1 or YAP1 siRNA, with stimulation or inhibition of cell migration and invasivity, respectively. Furthermore, transcriptome analysis showed that YAP1 transfection in Huh7 cells induces over-expression of genes involved in tumor stemness. In conclusion, Yap1 post-translational modifications favoring its ubiquitination and apoptosis characterize HCC with better prognosis, whereas conditions favoring the formation of YAP1-TEAD complexes are associated with aggressiveness and acquisition of stemness features by HCC cells

    Inhomogeneous Diastereomeric Composition of Mongersen Antisense Phosphorothioate Oligonucleotide Preparations and Related Pharmacological Activity Impairment

    Get PDF
    Mongersen is a 21-mer antisense oligonucleotide designed to downregulate Mothers against decapentaplegic homolog 7 (SMAD7) expression to treat Crohn's disease. Mongersen was manufactured in numerous batches at different scales during several years of clinical development, which all appeared identical, using common physicochemical analytical techniques, while only phosphorous-31 nuclear magnetic resonance (P-31-NMR) in solution showed marked differences. Close-up analysis of 27 mongersen batches revealed marked differences in SMAD7 downregulation in a cell-based assay. Principal component analysis of P-31-NMR profiles showed strong correlation with SMAD7 downregulation and, therefore, with pharmacological efficacy in vitro. Mongersen contains 20 phosphorothioate (PS) linkages, whose chirality (Rp/Sp) was not controlled during manufacturing. A different diastereomeric composition throughout batches would lead to superimposable analytical data, but to distinct P-31-NMR profiles, as indeed we found. We tentatively suggest that this may be the origin of different biological activity. As similar manifolds are expected for other PS-based oligonucleotides, the protocol described here provides a general method to identify PS chirality issues and a chemometric tool to score each preparation for this elusive feature

    The westward lithospheric drift, its role on the subduction and transform zones surrounding Americas. Andean to cordilleran orogenic types cyclicity

    Get PDF
    We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs. In the Andes, the subduction zone is shallow and with low dip, because the mantle flow sustains the slab; the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen. The Sandwich Arc is generated by a westerly-directed SAM (South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone. In this context, the slab hinge is retreating relative to the upper plate, generating the backarc basin and a low bathymetry single-verging accretionary prism. In Central America, the Caribbean plate presents a more complex scenario: a) To the East, the Antilles Arc is generated by westerly directed subduction of the SAM plate, where the eastward mantle flow is steepening and retreating the subduction zone. b) To the West, the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate, where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau. In the frame of the westerly lithospheric flow, the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate's convergence angle, such as in NAM (North American) plate with the collision with the Pacific/Farallon active ridge in the Neogene (Cordilleran orogenic type scenario). The easterly mantle drift sustains strong plate coupling along NAM, showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate. This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated (San Andreas and Queen Charlotte). The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate, transporting them along the strike slip fault systems as para-autochthonous terranes. This Cordilleran orogenic type scenario, is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene, segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-Liquiñe-Ofqui and Atacama strike slip fault systems, where subduction was terminated and para-autochthonous terranes transported. In the Neogene, the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario

    Extreme F activities in late Pegmatitic events as a key factor for lile and HFSE enrichment: The Angel Pegmatite, Central Argentina

    Get PDF
    The Ángel pegmatite forms part of the Comechingones pegmatitic field, in central Argentina, which is made up of pegmatites characterized by low to intermediate degrees of fractionation, classified as beryl-columbite-phosphate subtype pegmatites. These pegmatites are syntectonic with a regional shear zone. The Ángel pegmatite contains associations with quartz, microcline, plagioclase, a first generation of muscovite (muscovite I), beryl, members of the columbite group, triplite, and montebrasite. This association is locally affected by two stages of replacement. The first replacement stage is characterized by early albitization, followed by the development of associations of cleavelandite, quartz, Fe-rich elbaite (elbaite I), a second generation of muscovite (muscovite II), topaz, lacroixite, fluorapatite, pollucite, columbite-(Mn), and Hf-rich zircon. Muscovite II replaces montebrasite and muscovite I, and is characterized by slight enrichments in F, Rb, and Cs. The second replacement stage generated a new mineral association characterized by muscovite III, Fe-poor elbaite (elbaite II), Cs-micas, and U-rich hydroxykenomicrolite. Muscovite III replaces muscovite II and is characterized by strong enrichments in F, Cs, and, to a lesser extent, Rb. In turn, muscovite III is replaced by the Cs-micas sokolovaite and nanpingite. The high F content of the nanpingite suggests that this could be the F- analogue of nanpingite, which would be a new mineral. The sequence of replacement is indicative of an increase in the F activity in the latest pegmatitic fluids. The high F activity of these fluids favored the transport of Ta, U, Bi, Hf, Rb, Cs, and Li, and the formation of F-rich micas could be the mechanism for precipitating these LILE and HFSE elements. The syntectonic emplacement of this pegmatite in a large shear zone could be a decisive factor in the migration of these late evolved fluids rich in F, LILE, and HFSE

    A Single-Molecule Bioelectronic Portable Array for Early Diagnosis of Pancreatic Cancer Precursors

    Get PDF
    A cohort of 47 patients is screened for pancreatic cancer precursors with a portable 96-well bioelectronic sensing-array for single-molecule assay in cysts fluid and blood plasma, deployable at point-of-care (POC). Pancreatic cancer precursors are mucinous cysts diagnosed with a sensitivity of at most 80% by state-of-the-art cytopathological molecular analyses (e.g., KRASmut DNA). Adding the simultaneous assay of proteins related to malignant transformation (e.g., MUC1 and CD55) is deemed essential to enhance diagnostic accuracy. The bioelectronic array proposed here, based on single-molecule-with-a-large-transistor (SiMoT) technology, can assay both nucleic acids and proteins at the single-molecule limit-of-identification (LOI) (1% of false-positives and false-negatives). It comprises an enzyme-linked immunosorbent assay (ELISA)-like 8 × 12-array organic-electronics disposable cartridge with an electrolyte-gated organic transistor sensor array, and a reusable reader, integrating a custom Si-IC chip, operating via software installed on a USB-connected smart device. The cartridge is complemented by a 3D-printed sensing gate cover plate. KRASmut, MUC1, and CD55 biomarkers either in plasma or cysts-fluid from 5 to 6 patients at a time, are multiplexed at single-molecule LOI in 1.5 h. The pancreatic cancer precursors are classified via a machine-learning analysis resulting in at least 96% diagnostic-sensitivity and 100% diagnostic-specificity. This preliminary study opens the way to POC liquid-biopsy-based early diagnosis of pancreatic-cancer precursors in plasma

    Molecular imaging of angiogenesis with SPECT

    Get PDF
    Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed

    Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease

    Get PDF
    Previous studies showed that YAP1 is over-expressed in hepatocellular carcinoma (HCC). Here we observed higher expression of Yap1/Ctgf axis in dysplastic nodules and HCC chemically-induced in F344 rats, genetically susceptible to hepatocarcinogenesis, than in lesions induced in resistant BN rats. In BN rats, highest increase in Yap1- tyr357, p73 phosphorylation and Caspase 3 cleavage occurred. In human HCCs with poorer prognosis (< 3 years survival after partial liver resection, HCCP), levels of YAP1, CTGF, 14–3–3, and TEAD proteins, and YAP1-14-3-3 and YAP1-TEAD complexes were higher than in HCCs with better outcome (> 3 years survival; HCCB). In the latter, higher levels of phosphorylated YAP1-ser127, YAP1-tyr357 and p73, YAP1 ubiquitination, and Caspase 3 cleavage occurred. Expression of stemness markers NANOG, OCT-3/4, and CD133 were highest in HCCP and correlated with YAP1 and YAP1-TEAD levels. In HepG2, Huh7, and Hep3B cells, forced YAP1 over-expression led to stem cell markers expression and increased cell viability, whereas inhibition of YAP1 expression by specific siRNA, or transfection of mutant YAP1 which does not bind to TEAD, induced opposite alterations. These changes were associated, in Huh7 cells transfected with YAP1 or YAP1 siRNA, with stimulation or inhibition of cell migration and invasivity, respectively. Furthermore, transcriptome analysis showed that YAP1 transfection in Huh7 cells induces over-expression of genes involved in tumor stemness. In conclusion, Yap1 post-translational modifications favoring its ubiquitination and apoptosis characterize HCC with better prognosis, whereas conditions favoring the formation of YAP1-TEAD complexes are associated with aggressiveness and acquisition of stemness features by HCC cells

    Centromeric satellite DNA in the european plethodontid salamander Hydromantes (Amphibia, Urodela)

    No full text
    A highly repeated satellite DNA (Hy500) located in the centromeric heterochromatin of the European plethodontid salamander Speleomantes (formerly Hydromantes) was studied. The Hy500 family represents about 1% of the Speleomantes supramontis genome and has a major repeating unit of about 500 base pairs, which may have evolved from the progressive amplification of shorter sequences. This centromeric satellite is conserved in all the Speleomantes species, which nevertheless show distinct patterns of chromosomal distribution, which are of relevance as to their phylogenetic relationships.Key words: satellite DNA, amphibian chromosomes
    corecore