47 research outputs found

    A multi-step solution algorithm for Maxwell boundary integral equations applied to low-frequency electromagnetic testing of conductive objects

    Get PDF
    International audienceWe consider the solution, using boundary elements (BE), of the surface integral equation system arising in electromagnetic testing of conducting bodies, with emphasis on situations such that o(1)ωε0/σO(1)o(1) \leq \sqrt{\omega\varepsilon_{0}/\sigma} \leq O(1), Lωσμ0=O(1)L \sqrt{\omega\sigma\mu_{0}} =O(1) which includes in particular the case of eddy current testing) and assuming Lωε0μ02πL\omega\sqrt{\varepsilon_0 \mu_{0}}\leq 2\pi, i.e. low-frequency conditions (LL: diameter of conducting body). Earlier approaches for dielectric objects at low frequencies are not applicable in the present context. After showing that a simple normalization of the BE system significantly improves its conditioning, we propose a multi-step solution method based on block SOR iterations, which facilitates the use of direct solvers and converges within a few iterations for the considered range of physical parameters. This novel, albeit simple, treatment allows to perform eddy current-type analyses using standard Maxwell SIE formulations, avoiding the adverse consequences of ill-conditioning for low frequencies and high conductivities. Its performance and limitations are studied on three numerical examples involfing low frequencies and high conductivities

    Eddy current interaction between a probe coil and a conducting plate

    Get PDF
    International audienceConsider a coil above a conducting plate. The interaction between the probe-coil and the plate is modeled by a quasi-static approximation of Maxwell's equations: the eddy current model. The associated electromagnetic transmission boundary-value problem can be solved by the integral equations method. However, the discretization of integral operators gives dense, complex and ill-conditioned linear systems. We present here a method to compute the reaction field and the coil impedance variation by solving only surface partial differential equations

    Study of high-order discretization schemes for the time-harmonic maxwell equations

    No full text
    Cette thèse s'inscrit dans le domaine de la simulation numérique, et concerne l'étude des phénomènes de diffraction électromagnétique en régime harmonique. Nous nous intéressons plus particulièrement aux méthodes de représentation intégrale et aux simulations qui nécessitent l'usage d'un solveur direct. Leur domaine d'application est rapidement restreint avec les schémas d'approximation classiques, car ceux-ci requièrent un grand nombre d'inconnues pour obtenir un résultat précis. Pour remédier à ce problème, nous nous proposons d'adapter la méthode des éléments finis spectraux aux équations intégrales de l' électromagnétisme, puis au couplage intégro-différentiel. Notre approche préserve la conformité de l'espace d'approximation dans Hdiv(dans Hdiv-Hrotpour le couplage), et découple le temps d'assemblage de l'ordre d'approximation. Elle autorise ainsi une montée en ordre significative qui résulte en une réduction spectaculaire du nombre d'inconnues et des coûts de calcul, tout en assurant la précision du résultat. Une autre originalité de notre étude réside dans le développement d'éléments finis hexaédriques d'ordre anisotrope, pour traiter des obstacles métalliques recouverts d'une fine couche de matériau.This thesis deals with numerical simulation issues, and concerns the study of time- harmonic electromagnetic scattering problems. We are mainly interested in integral re-presentation methods and in simulations that need the use of a direct solver. Their range of application is rapidly limited with classical approximation schemes, since they require a large number of unknowns to achieve accurate results. To overcome this problem, we intend to adapt the spectral finite element method to electromagnetic integral equa-tions, then to the hybrid boundary element - finite element method (BE-FEM). The main advantage of our approach is that the Hdivconforming property (Hdiv-Hcurl within the BE-FEM) is enforced, meanwhile it can be interpreted as a point-based scheme. This al-lows a significant increase of the approximation order, that yields to a dramatical decrease of both the number of unknowns and computational costs, while ensuring the accuracy of the result. Another originality of our study lies in the development of high-order ani-sotropic hexahedral elements, to deal with conducting scatterers coated with a thin layer of material. Key words :computational electromagnetics, Maxwell equations, integral equations, hybrid boundary element - finite element method, method of moments, spectral finite element method, high-order approximation.ou

    The eddy current model as a low-frequency, high-conductivity asymptotic form of the Maxwell transmission problem

    Get PDF
    International audienceWe study the relationship between the Maxwell and eddy current (EC) models for three-dimensional configurations involving bounded regions with high conductivity σ\sigma in air and with sources placed remotely from the conducting objects, which typically occur in the numerical simulation of eddy current nondestructive testing (ECT) experiments. The underlying Maxwell transmission problem is formulated using boundary integral formulations of PMCHWT type. In this context, we derive and rigorously justify an asymptotic expansion of the Maxwell integral problem with respect to the non-dimensional parameter γ:=ωε0/σ\gamma:=\sqrt{\omega\varepsilon_{0}/\sigma}. The EC integral problem is shown to constitute the limiting form of the Maxwell integral problem as γ0\gamma\to0, i.e. as its low-frequency and high-conductivity limit. Estimates in γ\gamma are obtained for the solution remainders (in terms of the surface currents, which are the primary unknowns of the PMCHWT problem, and the electromagnetic fields) and the impedance variation measured at the extremities of the excitating coil. In particular, the leading and remainder orders in γ\gamma of the surface currents are found to depend on the current component (electric or magnetic, charge-free or not). These theoretical results are demonstrated on three-dimensional illustrative numerical examples, where the mathematically established estimates in γ\gamma are reproduced by the numerical results

    A macro‐element strategy based upon spectral finite elements and mortar elements for transient wave propagation modeling. Application to ultrasonic testing of laminate composite materials

    No full text
    International audienceSummary Proposing efficient numerical modeling tools for high‐frequency wave propagation in realistic configurations, such as the one appearing in ultrasonic testing experiments, is a major challenge, especially in the perspective of inversion loops or parametric studies. We propose a numerical methodology addressing this challenge and based upon the combination of the spectral finite element method and the mortar element method. From a prior decomposition of the scene of interest into “macro‐elements,” we show how one can improve the performances of the standard finite element procedures in terms of memory footprint and computational load. Additionally, using this decomposition, we are able to efficiently reconstruct important modeling features on‐the‐fly, such as orientations of anisotropic materials or splitting directions of perfectly matched layers formulations, altogether in a robust and efficient manner. We believe that this strategy is particularly suitable for parametric studies and sensitivity analysis. We illustrate our strategy by simulating the propagation of an ultrasonic wave into an immersed and curved anisotropic laminate 3D specimen flawed with an internal circular delamination of varying size, thus showing the efficiency and the robustness of our approach

    Perfectly matched transmission problem with absorbing layers : application to anisotropic acoustics in convex polygonal domains

    Get PDF
    International audienceThis paper presents an original approach to design perfectly matched layers (PML) for anisotropic scalar wave equations. This approach is based, first, on the introduction of a modified wave equation and, second, on the formulation of general "perfectly matched" transmission conditions for this equation. The stability of the transmission problem is discussed by way of the adaptation of a high frequency stability (necessary) condition, and we apply our approach to construct PML suited for any convex domain with straight boundaries. A new variational formulation of the problem, including a Lagrange multiplier at the interface between the physical and the absorbing domains, is then set and numerical results are presented in 2D and 3D. These results show the efficiency of our approach when using constant damping coefficients combined with high order elements

    Etude de schémas de discrétisation d'ordre élevé pour les équations de Maxwell en régime harmonique

    No full text
    Cette thèse s'inscrit dans le domaine de la simulation numérique, et concerne l'étude des phénomènes de diffraction électromagnétique en régime harmonique. Nous nous intéressons plus particulièrement aux méthodes de représentation intégrale et aux simulations qui nécessitent l'usage d'un solveur direct. Leur domaine d'application est rapidement restreint avec les schémas d'approximation classiques, car ceux-ci requièrent un grand nombre d'inconnues pour obtenir un résultat précis. Pour remédier à ce problème, nous nous proposons d'adapter la méthode des éléments finis spectraux aux équations intégrales de l' électromagnétisme, puis au couplage intégro-différentiel. Notre approche préserve la conformité de l'espace d'approximation dans Hdiv(dans Hdiv-Hrotpour le couplage), et découple le temps d'assemblage de l'ordre d'approximation. Elle autorise ainsi une montée en ordre significative qui résulte en une réduction spectaculaire du nombre d'inconnues et des coûts de calcul, tout en assurant la précision du résultat. Une autre originalité de notre étude réside dans le développement d'éléments finis hexaédriques d'ordre anisotrope, pour traiter des obstacles métalliques recouverts d'une fine couche de matériau.This thesis deals with numerical simulation issues, and concerns the study of time- harmonic electromagnetic scattering problems. We are mainly interested in integral re-presentation methods and in simulations that need the use of a direct solver. Their range of application is rapidly limited with classical approximation schemes, since they require a large number of unknowns to achieve accurate results. To overcome this problem, we intend to adapt the spectral finite element method to electromagnetic integral equa-tions, then to the hybrid boundary element - finite element method (BE-FEM). The main advantage of our approach is that the Hdivconforming property (Hdiv-Hcurl within the BE-FEM) is enforced, meanwhile it can be interpreted as a point-based scheme. This al-lows a significant increase of the approximation order, that yields to a dramatical decrease of both the number of unknowns and computational costs, while ensuring the accuracy of the result. Another originality of our study lies in the development of high-order ani-sotropic hexahedral elements, to deal with conducting scatterers coated with a thin layer of material. Key words :computational electromagnetics, Maxwell equations, integral equations, hybrid boundary element - finite element method, method of moments, spectral finite element method, high-order approximationPARIS-DAUPHINE-BU (751162101) / SudocSudocFranceF

    Eddy-current asymptotics of the Maxwell PMCHWT formulation for multiple bodies and conductivity levels

    No full text
    In eddy current (EC) testing applications, ECs σE (E : electric field, σ: conductivity) are induced in tested metal parts by a low-frequency (LF) source idealized as a closed current loop in air. In the case of highly conducting (HC) parts, a boundary integral equation (BIE) of the first kind under the magneto-quasi-static approximation-which neglects the displacement current-was shown in a previous work to coincide with the leading order of an asymptotic expansion of the Maxwell BIE in a small parameter reflecting both LF and HC assumptions. The main goal of this work is to generalize the latter approach by establishing a unified asymptotic framework that is applicable to configurations that may involve multiple moderately-conducting (σ = O(1)) and non-conducting objects in addition to (possibly multiply-connected) HC objects. Leading-order approximations of the quantities relevant to EC testing, in particular the impedance variation, are then found to be computable from a reduced set of primary unknowns (three on HC objects and two on other objects, instead of four per object for the Maxwell problem). Moreover, when applied to the Maxwell BIE, the scalings suggested by the asymptotic approach stabilize the condition number at low frequencies and remove the low-frequency breakdown effect. The established asymptotic properties are confirmed on 3D numerical examples for simple geometries as well as two EC testing configurations, namely a classical benchmark and a steam generator tube featured in pressurized water reactors of nuclear power plants
    corecore