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Abstract. Consider a coil above a conducting plate. The interaction between the probe-coil and the plate is modeled
by a quasi-static approximation of Maxwell’s equations: the eddy current model. The associated electromagnetic
transmission boundary-value problem can be solved by the integral equations method. However, the discretization
of integral operators gives dense, complex and ill-conditioned linear systems. We present here a method to compute
the reaction field and the coil impedance variation by solving only surface partial differential equations.
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1 INTRODUCTION

We are interested in eddy current non-destructive testing of a conducting plate. Eddy current method is based on
the principle of measuring changes in the impedance of an electromagnetic coil as it is scanned over a surface of
a conductive material. This method is modeled as a low-frequency electromagnetic transmission problem between
two media: the air containing the probe-coil and the conducting workpiece. Integral equations method is one of
the principal tools to solve this problem (e.g. [3, 5, 6]). This approach applies the Green’s function formalism to
reduce equivalently the governing boundary value problem to an integral equation set on the interface between the
media. The discretization of boundary integral formulations leads to fully-populated and in general, ill-conditioned
complex linear systems. We propose an alternative to compute the impedance variation of the coil in a simplified
configuration. This approach is based on the knowledge of the Steklov-Poincaré operator (or Dirichlet-to-Neumann
map) which is expressed by non-local square-root operators. To localize this operator, we propose the so-called
Padé approximation. This leads to solve only a finite number of sparse linear systems.

2 AN ELECTROMAGNETIC TRANSMISSION PROBLEM

2.1 Configuration

Consider the following configuration. The interface Γ = {x ∈ R3|x3 = 0} divides the whole space into two media:
a non-conducting air domain Ωext = R3

+ containing the coil, and a conducting plate Ωc = R3
− (without defect). We

denote by n the outgoing unit normal to the surface Γ.

We make the following assumptions. The coil creates a current source Js with sinusoidal angular frequency ω
and fixed amplitude. The impressed current Js has only support in Ωext and divJs = 0 and Js · n = 0 on ∂Ωs

with Ωs := supp(Js). Assume that the coil does not affect the electromagnetic parameters of Ωext. The exterior
domain Ωext is homogeneous with magnetic permeability µ = µ0, electric permittivity ε = ε0 and zero conductivity
σ = 0. As a first step, assume further that magnetic permeability µc and electric permittivity εc of the conductor
are constants. We are only interested in the variation of the electrical conductivity σc. For a workpiece Ωc without
defect, the conductivity may be assumed constant.
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Figure 1: Configuration

2.2 Functional setting

The results of this section can be found in [5]. Ω is equally Ωc and Ωext. The normal vector n is the outward normal
to Ωc. We define the trace operators: let u ∈ (C∞0 (Ω))3

γ×(u) = u|Γ × n (Dirichlet vectorial trace),
γT (u) = n× (u|Γ × n) (tangential component),
γN (u) = curl(u)|Γ × n (Neumann vectorial trace).

We extend the trace operators to H(curl,Ω) = {u ∈ (L2(Ω))3| curl(u) ∈ (L2(Ω))3}.

Definition 1 We define Y the range of γ× as follows

Y = {λ ∈ H−1/2(Γ); ∃E ∈ H(curl,Ω); E× n = λ}.

The space Y with the norm ‖λ‖Y = inf
E×n=λ

‖E‖H(curl,Ω) is a Hilbert space.

Theorem 1 We have
Y = {λ ∈ H−1/2(Γ);λ · n = 0 et divΓλ ∈ H−1/2(Γ)}.

We define the Hilbert space Z by

γT : H(curl,Ω) → Z = {λ ∈ H−1/2(Γ), curlΓλ ∈ H−1/2(Γ)}
E 7→ n×E× n.

Spaces Y and Z are in duality by the following duality product

< γ×(E), γT (v) >=

∫
curl E · v −

∫
E · curl v ∀E,v ∈ H(curl,Ω).

2.3 The electromagnetic transmission problem

We consider the E-field formulation. We introduce the notations:

• the total exterior field E|Ωext = Er + Einc, with Er and Einc the reaction and incident fields,

• the total interior field E|Ωc = Ec.

Consider the following time-harmonic model (with a time dependence in eiωt) with the condition ω
ε

σc
� 1. Under

this condition, we can consider the quasi-static approximation of Maxwell’s equations: the eddy current model
(see [1]). The dielectric displacement currents are neglected in the Maxwell’s equations in the exterior domain.
Furthermore, the assumptions on the current source and ε ' 0 yield divEr = 0 in Ωext.
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• Input : an incident electric field Einc generated by the coil and such that

curl curl Einc = −iωµ0Jsδcoil,divEinc = 0, in Ωext.

• E-field formulation : find (Er,Ec) such that

(P)



curl curl Er = 0,divEr = 0, in Ωext,
curl curl Ec + k2Ec = 0, in Ωc,
Ec
|Γ × n = Er

|Γ × n + Einc
|Γ × n, on Γ,

curl Ec
|Γ × n = curl Er

|Γ × n + curl Einc
|Γ × n, on Γ,

E(x) = O(
1

|x|
), curl E(x) = O(

1

|x|2
), |x| → +∞,

with the complex wavenumber k =

√
2

2
(1+i)

√
ωµ0σc. To overcome the unboundedness of the computational

domain, the method of integral equations (e.g. [5, 6]) can be applied. The Stratton-Chu integral representation
formula allows to express the field Er (resp. Ec) in terms of the surfacic unknowns Er

|Γ×n and curl Er
|Γ×n

(resp. Ec
|Γ × n and curl Ec

|Γ × n). The surfacic fields become the new unknows of the problem. Applying
the trace operators to the Stratton-Chu representation formula, and translating the boundary transmission
conditions yield boundary integral equations on Γ. We have to solve these integral equations to obtain:

• Output :
Er
|Γ × n and curl Er

|Γ × n.

These surface data are not experimentally observable. The only quantity which is accessible is the coil
impedance variation. This quantity of interest can be expressed with these data. We have:

• Impedance variation [2] :

∆Z = − i

I2ωµ0

(∫
Γ

curl Einc
|Γ × n ·Er

|Γ × nds−
∫

Γ

curl Er
|Γ × n ·Einc

|Γ × nds

)
, (1)

with u · v =
∑3

i=1 uivi, uv ∈ C3 and I the current energizing the coil.

3 SOLVING THE PROBLEM
In order to solve the electromagnetic transmission problem (P), we define the exterior and interior Steklov-Poincaré
operators

SP int
k : Z → Y

γ−T (Ec) 7→ γ−N (Ec),

SPext
0 : Z → Y

γ+
T (Er) 7→ γ+

N (Er).

In the configuration described in Fig. 1, Fourier analysis allows us to obtain expressions in terms of surface differ-
ential operators:

SP int
k =

(
k2IdΓ −∆Γ

)−1/2 [
k2IdΓ + curlΓ curlΓ

]
,

and
SPext

0 = − (−∆Γ)
−1/2

curlΓ curlΓ,

with ∆Γv =

 ∆Γv1

−∆Γv2

0

 =

 ∂2
1v1 + ∂2

2v1

∂2
1v2 + ∂2

2v2

0

, curlΓ v =

 ∂2v
−∂1v

0

 et curlΓ v = ∂1v2 − ∂2v1. Then, the

transmission problem (P) is equivalently reduced to solving the surface problem: find γ+
T (Er) ∈ H−1/2(curlΓ,Γ)

solution to
(SP int

k − SPext
0 )γ+

T (Er) = −(SP int
k + SPext

0 )γ+
T (Einc), on Γ. (2)
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To this end, we use the Helmholtz decomposition of the fields. In the case of the interface Γ = {x3 = 0}, the
Helmholtz decomposition of γ+

T (Er) and γ+
T (Einc) ∈ H−1/2(curlΓ,Γ) are given respectively by

γ+
T (Einc) = ∇Γe1 + curlΓ e2, (e1, e2) ∈ H1/2(Γ)×H3/2(Γ),

γ+
T (Er) = ∇Γϕ1 + curlΓ ϕ2, (ϕ1, ϕ2) ∈ H1/2(Γ)×H3/2(Γ).

Solving equation (2) means to seek (ϕ1, ϕ2) ∈ H1/2(Γ)×H3/2(Γ) that is solution of the differential system
ϕ1 = −e1 on Γ. (3)

ϕ2 =

(
−1 + 2

∆Γ

k2
+ 2
(−∆Γ

k2

)1/2(
1− ∆Γ

k2

)1/2
)
e2, on Γ, (4)

where (e1, e2) are known. The operators involved in equation (4) are non-local operators. We propose to localize
the square-root operators thanks to a Padé paraxial approximation of order Np with a rotating branch-cut technique
of angle θ [7, 4]

(
1− ∆Γ

k2

)1/2

≈ C0 −
Np∑
k=1

Aj∆Γ

(
k2 −Bj∆Γ

)−1

, (5)

with C0, Aj , Bj , j = 1, . . . , Np complex coefficients depending on θ. Now, we can compute the impedance
variation using the following formula

∆Z =
2

I2

σc
k2

∫
Γ

curlΓ(−∆Γ)1/2e2 · curlΓ ϕ2ds. (6)

4 CONCLUSIONS
In this paper, we propose an approach to solve a low-frequency electromagnetic transmission problem by solving
only a finite number of sparse linear systems. On the contrary, the usual method of integral equations involves the
solution of dense complex and ill-conditioned linear systems. We have to implement the method in order to study
its accuracy. The solution of this direct problem is the first step of the research program PINCEL which is devoted
to the solution of an inverse problem related to the location of defects in a conducting plate.
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