1,283 research outputs found

    Troubling identities: teacher education students` constructions of class and ethnicity

    Full text link
    Working with diverse student populations productively depends on teachers and teacher educators recognizing and valuing difference. Too often, in teacher education programs, when markers of identity such as gender, ethnicity, \u27race\u27, or social class are examined, the focus is on developing student teachers\u27 understandings of how these discourses shape learner identities and rarely on how these also shape teachers\u27 identities. This article reports on a research project that explored how student teachers understand ethnicity and socio-economic status. In a preliminary stage of the research, we asked eight Year 3 teacher education students who had attended mainly Anglo-Australian, middle class schools as students and as student teachers, to explore their own ethnic and classed identities. The complexities of identity are foregrounded in both the assumptions we made in selecting particular students for the project and in the ways they constructed their own identities around ethnicity and social class. In this article we draw on these findings to interrogate how categories of identity are fluid, shifting and ongoing processes of negotiation, troubling and complex. We also consider the implications for teacher education.<br /

    The professional knowledge that counts in Australian contemporary early childhood teacher education

    Get PDF
    Australia is typical of many western countries where the provision of quality early childhood services has become a government priority. The government initiatives in Australia include repeated demands for 'well-qualified' early childhood educators. As a result of these demands the preservice preparation of early childhood educators is under intense scrutiny. This scrutiny raises many questions regarding the knowledge base considered to be essential for early childhood educators and leads to further questions about who has the authority to produce this knowledge. This article explores these questions by firstly examining some of the ways Australian early childhood teacher education is situated within the current knowledge environment. This is followed by a discussion regarding the debates about what early childhood educators 'need to know'. The third section of the article traces some of the historical features of Australian early childhood teacher education, for the author argues that contemporary questions about 'which' knowledge is to be included in early childhood teacher education are best understood alongside their historical precedents. The article concludes by considering the implications of the debates for contemporary early childhood teacher education and suggests that a way forward involves reconsidering the traditional binary between theory and practical knowledge

    Du Maar au Diatrème: les champs volcaniques de Pali Aike (Argentine) et Missouri River Breaks (États-Unis) = From Maar to Diatreme: Pali Aike (Argentina) and Missouri River Breaks (United-States) volcanic fields.

    Get PDF
    Ce projet de doctorat traite de certains processus éruptifs des maars-diatrèmes. Ces volcans monogéniques, de composition felsique à ultramafique, représentent le second type de volcan subaérien le plus commun après les cônes de scories. Leur structure se divise en deux parties principales: (i) le maar qui comprend le cratère, recoupant la surface pré-éruptive, et l'anneau de matériel pyroclastique composé de plusieurs lits d'épaisseur variable; et (ii) le diatrème, la partie souterraine de forme conique, qui se compose d'une partie supérieure litée et d'une partie inférieure non-litée. À la base du diatrème se trouve la zone de la racine («root zone») : lien entre le dyke nourricier et la base du diatrème. La communauté volcanologique internationale s'accorde sur l'origine phréatomagmatique de ces volcans: ils sont formés par une multitude d'explosions engendrées par l'interaction du magma ascendant avec une source d'eau externe. Toutefois, il existe une controverse quant à l'origine des diatrèmes kimberlitiques, qui se formeraient soit par fragmentation magmatique à cause de l'abondance de volatiles dans le magma, soit par fragmentation phréatomagmatique. Les objectifs de ce projet étaient (i) de développer une méthode pour mesurer la granulométrie d'échantillons volcanoclastiques consolidés; (ii) d'étudier le contrôle potentiel de la nature du substrat sur la morphologie des maars-diatrèmes; (iii) de vérifier l'importance de la subsidence syn-éruptive dans l'évolution des diatrèmes; et (iv) de contraindre le mode de formation et de transport des pyroclastes juvéniles sub-sphériques à sphériques, communs dans les diatrèmes ultramafiques. Qui plus est, l'étude de diatrèmes ultramafiques a permis une comparaison entre ceux-ci et les diatrèmes kimberlitiques. Deux sites d'étude ont été choisis afin de répondre à ces objectifs. D'abord, des maars ont été investigués dans le champ volcanique plio-pléistocène Pali Aike (PA), de composition basaltique alcaline à basanitique, dans le sud de l'Argentine. Puis, des diatrèmes ultramafiques d'âge Éocène ont été étudiés dans le champ volcanique Missouri River Breaks (MRB), au Montana (États-Unis). Pour chacun des sites, une étude de la morphologie des systèmes ainsi qu'une étude détaillée des dépôts pyroclastiques ont été réalisées. Les observations de terrain ont été associées à des analyses en laboratoire: granulométrie, pétrographie et géochimie. Pour les dépôts consolidés, une méthode d'analyse granulométrique par traitement d'images et stéréologie a été développée afin d'avoir des données directement comparables aux données granulométriques d'échantillons meubles obtenues par tamisage. L'influence syn-éruptive du substrat sur les maars et les diatrèmes pourrait avoir été surestimée dans la littérature. Les diatrèmes du champ volcanique MRB, mis en place dans un substrat « mou », sont profonds (>1,3-1,5 km), larges, et leur parois sont abruptes ce qui est plutôt typique d'un substrat rocheux: la partie profonde du diatrème n'est pas influencée fortement par le substrat. Pour les maars, la difficulté est de séparer l'évolution post-éruptive de la forme du cratère juste après l'éruption. Les maars du champ volcanique PA se sont mis en place dans un substrat « mixte », mais leur morphologie semble avoir été plus affectée par des processus post-éruptifs (érosion et subsidence) que par la nature du substrat au moment de l'éruption. La subsidence syn-éruptive est un mécanisme ayant été très actif durant la mise en place des maars-diatrèmes du champ volcanique MRB. Les indices de terrain le démontrant sont : le litage en auge dans les dépôts pyroclastiques, à grande profondeur par rapport à la paléosurface; la présence de domaines de la roche encaissante à plus de 1 km de profondeur par rapport à leur niveau d'origine; et les lits sédimentaires courbés dans le substrat en bordure du diatrème. Toutefois, la subsidence syn-éruptive n'est pas forcément observable dans tous les maars-diatrèmes à travers le monde, et la variation de l'importance de ce phénomène a des implications pour les modèles de mise en place des diatrèmes. Les pyroclastes juvéniles sub-sphériques à sphériques, souvent identifiés dans les diatrèmes kimberlitiques - et donc supposés par plusieurs auteurs être formés par fragmentation magmatique - se retrouvent aussi dans les dépôts pyroclastiques des diatrèmes du champ MRB. L'absence de vésicules et le fait que de tels pyroclastes aient été recréés en laboratoire par fragmentation phréatomagmatique prouvent qu'il est possible de les intégrer dans le modèle phréatomagmatique de mise en place des diatrèmes du champ volcanique MRB. Ces pyroclastes se forment suite à la fragmentation d'un magma peu visqueux dans le diatrème et acquièrent une forme sphérique par tension de surface avant de refroidir rapidement. Les nombreux point communs mis en évidence entre les diatrèmes de composition ultramafique du champ volcanique MRB et les diatrèmes de composition kimberlitique (classe 1) tels que: (i) une structure comparable; (ii) une composition ultramafique; (iii) du litage dans les dépôts pyroclastiques; (iv) des colonnes de dépôts pyroclastiques non-litées; (v) des domaines du substrat déplacés dans le diatrème; et (vi) la présence de pyroclastes juvéniles sub-sphériques à sphériques, a conduit à l'hypothèse qu'une fragmentation phréatomagmatique peut être également envisagée pour la formation des maars-diatrèmes kimberlitiques.This doctoral thesis addresses eruptive processes in maar-diatreme volcanoes. These monogenetic volcanoes of felsic to ultramafic composition are the second most common type of subaerial volcano after scoria cones. Their structure is divided into two major parts: (i) the maar, a crater which cuts the pre-eruptive surface, surrounded by a tephra ring composed of several beds of variable thicknesses; (ii) the diatreme, the cone-shaped subterranean part, which is composed of an upper bedded part and a lower unbedded part. At the base of the diatrème, the root zone marks the transition between the feeder dyke and the diatreme. The international volcanology community agrees on the phreatomagmatic origin of these volcanoes: they form by a series of explosions resulting from the interaction of rising magma with external water. However, there is some controversy about kimberlitic diatremes which would result either from magmatic fragmentation (due to excess volatiles in the magma) or from phreatomagmatic fragmentation. The objectives of the project were to (i) develop a method to measure the grain-size distribution of consolidated volcaniclastic samples; (ii) study the potential control of the type of substrate on maar-diatreme morphology; (iii) verify the importance of syn-eruptive subsidence for the evolution of diatremes; and (iv) constrain the mode of formation and transport of juvenile sub-spherical to spherical pyroclasts, common in ultramafic diatremes. In addition, the study of ultramafic diatremes allows a comparison between them and kimberlitic diatremes. Two study sites were chosen. First, maars were investigated within the Pali Aike volcanic field (PAVF), of alkali basalt to basanitic composition, in southern Argentina. Then ultramafic diatremes of Eocene age were studied in the Missouri River Breaks (MRB) volcanic field in Montana (United States). For each site, the morphology of the volcanoes was characterized, and a detailed study of the pyroclastic deposits was made. Field observations were associated to laboratory analyses: grain-size, petrography and geochemistry. For consolidated deposits, an image processing and stereology method has been developed to obtain grain-size data directly comparable with sieving data from unconsolidated samples. The influence of the type of substrate, on maars and diatremes during the eruption may have been overestimated in the literature. The MRB diatremes were emplaced in a soft substrate yet they are deep (>1.3 km-1.5 km), wide, and steep, features supposedly more typical of diatremes emplaced in a hard substrate. Clearly, the deep diatreme is not strongly influenced by the type of substrate. For maars, the difficulty is to separate the post-eruptive evolution from the crater shape just after the eruption. The PAVF maars are set in a mixed substrate, but their morphology seems to be more influenced by post-eruptive processes (erosion and subsidence) than by the type of substrate during the eruption. Syn-eruptive subsidence was very active during the emplacement of the MRB diatremes. Field evidence supporting this contention includes the saucer-shape bedding of pyroclastic deposits to great depths from the paleosurface; the presence of country rock domains now displaced more than 1 km down from their original levels; and the downward curvature of sedimentary layers in the substrate near the walls of the diatremes. However, syn-eruptive subsidence is not necessarily observable in ail maar-diatremes worldwide and variations in the importance of this phenomenon have implications for diatreme emplacement models. The sub-spherical to spherical juvenile pyroclasts often identified within kimberlitic diatremes - and assumed by several authors to be formed by magmatic fragmentation - are also found in the pyroclastic deposits of the MRB diatremes. The lack of vesicles and the fact that such pyroclasts have been created in the laboratory as a result of phreatomagmatic fragmentation show that it is possible to integrate them in a phreatomagmatic model for the MRB diatremes. These pyroclasts are formed by fragmentation of low viscosity magma in the diatreme and acquire their spherical shape due to surface tension, before cooling quickly. The numerous common points between ultramafic diatremes of the MRB volcanic field and kimberlitic diatremes (class 1) such as (i) a comparable structure; (ii) an ultramafic composition; (iii) the presence of bedded pyroclastic deposits; (iv) the occurrence of columns of unbedded pyroclastic deposits; (v) country rock domains displaced downwards in the diatreme; and (vi) the presence of sub-spherical to spherical juvenile pyroclasts, leads to the idea that phreatomagmatic fragmentation can be envisaged for kimberlitic diatremes too

    Social justice and out-of-school science learning: Exploring equity in science television, science clubs and maker spaces

    Get PDF
    We cannot take access to equitable out-of-school science learning for granted. Data compiled in 2012 show that between a fifth (22% in Brazil) and half (52% in China and the United States) of people in China, Japan, South Korea, India, Malaysia, the United States, the European Union, and Brazil visited zoos, aquaria, and science museums (National Science Foundation, 2012). But research suggests participation in out-of-school science learning is far from equitable and is marked by advantage, not least the social axes of age, social class, and ethnicity (Dawson, 2014a, 2014b; National Science Foundation, 2012; OECD, 2012). For instance, in the UK data suggest that the two-thirds of the population who took part in out-of-school science learning activities1 in the previous year were more affluent (upper and middle classes) and from the White ethnic majority (Ipsos MORI, 2014). If we believe that out-of-school science learning provides valuable educational, cultural, social and political opportunities, then we must take questions of equity seriously. Ideas from social justice can help us understand how equity issues are woven through out-of-school science learning practices. In this paper, I outline how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. I apply these ideas to out-of-school science learning via television, science clubs and maker spaces, looking at research as well as illustrative examples to see how equity challenges are being addressed in practice. I argue that out-of-school science learning practices can be understood on a spectrum from weak to strong models of social justice. Thinking about social justice as a spectrum helps us think through what equitable out-of-school science learning practices might involve, both to analyze existing practices and, importantly, to imagine new, more inclusive ones. Out-of-school science learning is a broad term, used to describe quite different activities, participants, aims, and practices. It can mean enjoying science festivals, watching science documentaries, pursing science-related hobbies as well as activities focused on engineering, mathematics, or technology (see, e.g., Bonney et al., 2009; Dingwall & Aldridge, 2006; Kaiser, Durant, Levenson, Wiehe, & Linett, 2013). In this paper, I focus primarily on the contrasting worlds of television and science clubs as out-of-school science learning contexts2. I use “science” as an umbrella term for science, technology, engineering, or mathematics related subjects. However, I add a caveat to how I use the term out-of-school. Because “out-of-school” invokes the idea of school, there can be a tendency to focus on youth as participants and activities that are for, by, or with youth. But of course adults may not consider their television watching an “out-of-school” activity. Thus, I note here that I keep both adults and youth in mind when writing about equity and out-of-school science learning

    How child‐centred education favours some learners more than others

    Get PDF
    Debates on how best to educate young children have been raging over the last 100 years—more often fuelled by ideological preferences rather than empirical evidence. To some extent this is hardly surprising given the difficulty of examining pupil progress in a systematic and comparative way. However, the introduction of a new child‐centred curriculum in Wales provides the opportunity to undertake just such an examination. The Foundation Phase curriculum, introduced in 2008, is designed to provide all 3‐ to 7‐year‐olds with a developmental, experiential, play‐based approach to learning. Evidence from a major 3‐year evaluation of this intervention finds that, overall, pupil progress and well‐being is fostered in those settings where the principles of the Foundation Phase have been most closely followed. However, the evidence also suggests that even within these contexts, progress is uneven and that some kinds of children seem to gain more from this approach than others. The ‘losers’ appear to be boys and those living in poverty. Drawing on the theories of Basil Bernstein, the paper explores why this may be the case and examines the relative significance of teacher dispositions, teacher–learner dynamics and the availability of resources. The paper concludes by arguing that these issues will need to be addressed if the benefits of child‐centred approaches are to benefit all
    corecore